
EUROGRAPHICS 2013 / I. Navazo, P. Poulin
(Guest Editors)

Volume 32 (2013), Number 2

Geosemantic Snapping for Sketch-Based Modeling:
Optimization Details

A. Shtof1 and A. Agathos2 and Y. Gingold3 and A. Shamir4 and D. Cohen-Or1

1Tel Aviv University, Tel Aviv, Israel
2West University of Timişoara, Timişoara, Romania

3George Mason University, Fairfax, USA
4The Interdisciplinary Center, Herzliya, Israel

1. Introduction

In this supplemental document, we describe our optimiza-
tion problem in detail and our implementation of the aug-
mented Lagrangian method we use to solve it.

2. Optimization problem

The paper describes the optimization problem’s ingredients:
its individual objective and constraint functions. We comple-
ment this description by explicitly stating the optimization
problems solved by our system.

Each primitive p in our system has a set of parameters xp.
Fitting a primitive p to the sketch is done by minimizing
an objective function φp(xp) subject to the set of internal
structure constraints Cp(xp) = 0. In the paper we detailed
xp, φp and Cp for each kind of primitive.

The inter-primitive relationships of the model are specified
by a set of geosemantic relationships G. For a relationship
g ∈ G we define xg to be the set of parameters that partic-
ipate in this relationship. For example, if g is an “orthogo-
nal” relationship between two circles, then xg is a vector of
six components: the normal vectors of both circles. For each
g ∈ G we define a constraint equation ψg(xg) = 0. The con-
straint equations for each relationship are described in the
paper. Note that the components of xg are a subset of

⋃
p

xp.

While the user drags a primitive p, the optimization problem
we solve is:

min : φp(xp)
s.t. : Cp(xp) = 0 (1)

This problem is solved using the augmented Lagrangian
method [NW06], with the user’s specified position and ori-
entation as the starting point. By solving this problem while
dragging, the user is shown a real-time “preview” of the

snapped state of the primitive. Let x∗p be the solution of this
optimization problem.

Let P = {p1, ..., pm} be the set of primitives in the modeled
object and let x = (xp1 , ...,xpm) be the vector of all primi-
tives’ parameters. When the user finishes dragging and re-
leases a primitive p, the system uses the last obtained x∗p to
infer geosemantic relations (constraints) and add them to G.
Then, the primitive is added to P and the following optimiza-
tion problem is solved:

min
x

: ∑p∈P φp(xp)

s.t. : Cp(xp) = 0 ∀p ∈ P
ψg(xg) = 0 ∀g ∈ G

(2)

Let x∗Pprev
be the state of the primitives in the model before

p was added. We define xstart = (x∗Pprev
,x∗p) and use it as the

starting point to an augmented Lagrangian optimization al-
gorithm for solving Equation 2. The intuition behind xstart is
that the snapped state of the newly added primitive without
geosemantic constraints is a good initial guess for its final
state once geosemantic constraints are included.

3. Augmented Lagrangian optimization

To solve our equality-constrained optimization problems
(Equations 1 and 2), we employ the augmented Lagrangian
method. This section provides an intuitive description of the
technique—see Nocedal and Wright [NW06] for a thorough
presentation—as well as pseudocode, implementation de-
tails, and motivation.

An equality-constrained optimization problem can be ex-
pressed in the following form:

min : f (x)
s.t. : c1(x) = 0

c2(x) = 0
· · ·

cm(x) = 0

submitted to EUROGRAPHICS 2013.

2 A. Shtof & A. Agathos & Y. Gingold & A. Shamir & D. Cohen-Or / Geosemantic Snapping for Sketch-Based Modeling: Optimization Details

The Augmented Lagrangian method, like many optimiza-
tion methods, proposes to solve this problem by solving a
sequence of unconstrained problems.

Given a constant µ and set of constants λ = {λ1, ...,λm},
define the following unconstrained objective function:

Laug(x; µ,λ) = f (x)+
m

∑
i=1

λi · ci(x)︸ ︷︷ ︸
Lagrangian term

+
µ

2
·

m

∑
i=1
|ci(x)|2︸ ︷︷ ︸

Penalty term

Intuitively, we can see that this function resembles both the
Lagrange function and a penalty function. Intuitively, we can
see that minimizing this function over x attempts to approx-
imate the KKT conditions:

OxL = 0
ci(x) = 0

With this intuition in mind, pseudocode for an augmented
Lagrangian algorithm is:

1: procedure AUGMENTED-LAGRANGIAN(x(0), λ (0), µ)
2: i← 0
3: while not converged do
4: x(i+1)← argmin

y
Laug(y; µ,λ (i)) starting from x(i)

5: for j = 1→ m do
6: λ

(i+1)
j ← λ

(i)
j +µ · c j(x(i+1))

7: end for
8: i← i+1
9: end while

10: end procedure

Line 4 minimizes the unconstrained objective function Laug.
Lines 5–7 update λ to better approximate the actual La-
grange multipliers. This ensures that the next iteration of line
4 will better approximate the KKT conditions. This simple
update formula is based on the observation that the gradient
of Laug and of the actual Lagrange function are very close
when x is close to constraint satisfaction.

Implementation details. We use L-BFGS [LN89] to solve
the unconstrained optimization problem on line 4. We eval-
uate gradients using reverse-mode automatic differentiation
[GW08]; the library that we developed for this purpose has
been made available to others as an open source project†.

More sophisticated implementations of the augmented La-
grangian method update µ to accelerate convergence, but it
is not required. (Under certain conditions it can be shown
that for a given problem there exists some µ0 such that the
algorithm will converge for all µ > µ0.) Our implementation
does include one such method to accelerate convergence.
The pseudocode for our method is:

† http://autodiff.codeplex.com

1: procedure AUGMENTED-LAGRANGIAN-ACCEL(x(0),
λ (0), µ0, µmax, α , β)

2: i← 0
3: µ ← µ0
4: Cmax← 1

µα

5: while not converged do
6: x(i+1)← argmin

y
Laug(y; µ,λ (i)) starting from x(i)

7: for j = 1→ m do
8: λ

(i+1)
j ← λ

(i)
j +µ · c j(x(i+1))

9: end for
10: if ∑

m
i=1 |ci(x(i+1))|2 <Cmax then

11: Cmax← Cmax
µα

12: else
13: µ ← min(µ ·β ,µmax)

14: Cmax← 1
µα

15: end if
16: i← i+1
17: end while
18: end procedure

(Changes from AUGMENTED-LAGRANGIAN are high-
lighted in red.) The intuition behind AUGMENTED-
LAGRANGIAN-ACCEL is that if the constraint violation is
not reduced enough, we increase µ . We use µ0 = 10, µmax =
1000, α = 0.5, and β = 2; we initialize λ 0

i = 0.

Augmented Lagrangian vs. Penalty methods. The penalty
method, too, solves a sequence of unconstrained problems.
Given a parameter µ , penalty methods optimize the follow-
ing unconstrained objective function:

Lpen(x; µ) = f (x)+
µ

2
·

m

∑
i=1
|ci(x)|2

In theory, as µ goes to infinity the solution obtained by
minimizing Lpen(x; µ) converges to the solution of the con-
strained optimization problem. In practice, one needs to min-
imize multiple times with increasing values of µ . During de-
velopment, we were not able to find a simple strategy for up-
dating µ that converges quickly without getting stuck in a vi-
sually distorted local minima. In contrast, the augmented La-
grangian method converges quickly and is more “resilient”
to the non-convexity of our optimization problem.

References
[GW08] GRIEWANK A., WALTHER A.: Evaluating Derivatives:

Principles and Techniques of Algorithmic Differentiation. Soci-
ety for Industrial Mathematics, 2008. 2

[LN89] LIU D. C., NOCEDAL J.: On the limited memory BFGS
method for large scale optimization. Mathematical Programming
45 (1989), 503–528. 10.1007/BF01589116. 2

[NW06] NOCEDAL J., WRIGHT S. J.: Numerical Optimization.
Springer, 2006. 1

submitted to EUROGRAPHICS 2013.

http://autodiff.codeplex.com

