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1. Introduction

In this supplemental document, we describe our optimiza-
tion problem in detail and our implementation of the aug-
mented Lagrangian method we use to solve it.

2. Optimization problem

The paper describes the optimization problem’s ingredients:
its individual objective and constraint functions. We comple-
ment this description by explicitly stating the optimization
problems solved by our system.

Each primitive p in our system has a set of parameters xp.
Fitting a primitive p to the sketch is done by minimizing
an objective function φp(xp) subject to the set of internal
structure constraints Cp(xp) = 0. In the paper we detailed
xp, φp and Cp for each kind of primitive.

The inter-primitive relationships of the model are specified
by a set of geosemantic relationships G. For a relationship
g ∈ G we define xg to be the set of parameters that partic-
ipate in this relationship. For example, if g is an “orthogo-
nal” relationship between two circles, then xg is a vector of
six components: the normal vectors of both circles. For each
g ∈ G we define a constraint equation ψg(xg) = 0. The con-
straint equations for each relationship are described in the
paper. Note that the components of xg are a subset of

⋃
p

xp.

While the user drags a primitive p, the optimization problem
we solve is:

min : φp(xp)
s.t. : Cp(xp) = 0 (1)

This problem is solved using the augmented Lagrangian
method [NW06], with the user’s specified position and ori-
entation as the starting point. By solving this problem while
dragging, the user is shown a real-time “preview” of the

snapped state of the primitive. Let x∗p be the solution of this
optimization problem.

Let P = {p1, ..., pm} be the set of primitives in the modeled
object and let x = (xp1 , ...,xpm) be the vector of all primi-
tives’ parameters. When the user finishes dragging and re-
leases a primitive p, the system uses the last obtained x∗p to
infer geosemantic relations (constraints) and add them to G.
Then, the primitive is added to P and the following optimiza-
tion problem is solved:

min
x

: ∑p∈P φp(xp)

s.t. : Cp(xp) = 0 ∀p ∈ P
ψg(xg) = 0 ∀g ∈ G

(2)

Let x∗Pprev
be the state of the primitives in the model before

p was added. We define xstart = (x∗Pprev
,x∗p) and use it as the

starting point to an augmented Lagrangian optimization al-
gorithm for solving Equation 2. The intuition behind xstart is
that the snapped state of the newly added primitive without
geosemantic constraints is a good initial guess for its final
state once geosemantic constraints are included.

3. Augmented Lagrangian optimization

To solve our equality-constrained optimization problems
(Equations 1 and 2), we employ the augmented Lagrangian
method. This section provides an intuitive description of the
technique—see Nocedal and Wright [NW06] for a thorough
presentation—as well as pseudocode, implementation de-
tails, and motivation.

An equality-constrained optimization problem can be ex-
pressed in the following form:

min : f (x)
s.t. : c1(x) = 0

c2(x) = 0
· · ·

cm(x) = 0
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The Augmented Lagrangian method, like many optimiza-
tion methods, proposes to solve this problem by solving a
sequence of unconstrained problems.

Given a constant µ and set of constants λ = {λ1, ...,λm},
define the following unconstrained objective function:

Laug(x; µ,λ ) = f (x)+
m

∑
i=1

λi · ci(x)︸ ︷︷ ︸
Lagrangian term

+
µ

2
·

m

∑
i=1
|ci(x)|2︸ ︷︷ ︸

Penalty term

Intuitively, we can see that this function resembles both the
Lagrange function and a penalty function. Intuitively, we can
see that minimizing this function over x attempts to approx-
imate the KKT conditions:

OxL = 0
ci(x) = 0

With this intuition in mind, pseudocode for an augmented
Lagrangian algorithm is:

1: procedure AUGMENTED-LAGRANGIAN(x(0), λ (0), µ)
2: i← 0
3: while not converged do
4: x(i+1)← argmin

y
Laug(y; µ,λ (i)) starting from x(i)

5: for j = 1→ m do
6: λ

(i+1)
j ← λ

(i)
j +µ · c j(x(i+1))

7: end for
8: i← i+1
9: end while

10: end procedure

Line 4 minimizes the unconstrained objective function Laug.
Lines 5–7 update λ to better approximate the actual La-
grange multipliers. This ensures that the next iteration of line
4 will better approximate the KKT conditions. This simple
update formula is based on the observation that the gradient
of Laug and of the actual Lagrange function are very close
when x is close to constraint satisfaction.

Implementation details. We use L-BFGS [LN89] to solve
the unconstrained optimization problem on line 4. We eval-
uate gradients using reverse-mode automatic differentiation
[GW08]; the library that we developed for this purpose has
been made available to others as an open source project†.

More sophisticated implementations of the augmented La-
grangian method update µ to accelerate convergence, but it
is not required. (Under certain conditions it can be shown
that for a given problem there exists some µ0 such that the
algorithm will converge for all µ > µ0.) Our implementation
does include one such method to accelerate convergence.
The pseudocode for our method is:

† http://autodiff.codeplex.com

1: procedure AUGMENTED-LAGRANGIAN-ACCEL(x(0),
λ (0), µ0, µmax, α , β )

2: i← 0
3: µ ← µ0
4: Cmax← 1

µα

5: while not converged do
6: x(i+1)← argmin

y
Laug(y; µ,λ (i)) starting from x(i)

7: for j = 1→ m do
8: λ

(i+1)
j ← λ

(i)
j +µ · c j(x(i+1))

9: end for
10: if ∑

m
i=1 |ci(x(i+1))|2 <Cmax then

11: Cmax← Cmax
µα

12: else
13: µ ← min(µ ·β ,µmax)

14: Cmax← 1
µα

15: end if
16: i← i+1
17: end while
18: end procedure

(Changes from AUGMENTED-LAGRANGIAN are high-
lighted in red.) The intuition behind AUGMENTED-
LAGRANGIAN-ACCEL is that if the constraint violation is
not reduced enough, we increase µ . We use µ0 = 10, µmax =
1000, α = 0.5, and β = 2; we initialize λ 0

i = 0.

Augmented Lagrangian vs. Penalty methods. The penalty
method, too, solves a sequence of unconstrained problems.
Given a parameter µ , penalty methods optimize the follow-
ing unconstrained objective function:

Lpen(x; µ) = f (x)+
µ

2
·

m

∑
i=1
|ci(x)|2

In theory, as µ goes to infinity the solution obtained by
minimizing Lpen(x; µ) converges to the solution of the con-
strained optimization problem. In practice, one needs to min-
imize multiple times with increasing values of µ . During de-
velopment, we were not able to find a simple strategy for up-
dating µ that converges quickly without getting stuck in a vi-
sually distorted local minima. In contrast, the augmented La-
grangian method converges quickly and is more “resilient”
to the non-convexity of our optimization problem.
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