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Abstract
Model training algorithms which observe a small portion of the training set in each
computational step are ubiquitous in practical machine learning, and include both
stochastic and online optimization methods. In the vast majority of cases, such algo-
rithms typically observe the training samples via the gradients of the cost functions
the samples incur. Thus, these methods exploit are the slope of the cost functions via
their first-order approximations. To address limitations of gradient-based methods,
such as sensitivity to step-size choice in the stochastic setting, or inability to exploit
small function variability in the online setting, several streams of research attempt
to exploit more information about the cost functions than just their gradients via the
well-known proximal operators. However, implementing such methods in practice
poses a challenge, since each iteration step boils down to computing the proximal
operator, which may not be as easy as computing a gradient. In this work we devise
a novel algorithmic framework, which exploits convex duality theory to achieve both
algorithmic efficiency and software modularity of proximal operator implementations,
in order to make experimentation with incremental proximal optimization algorithms
accessible to a larger audience of researchers and practitioners, by reducing the gap
between their theoretical description in research papers and their use in practice.
We provide a reference Python implementation for the framework developed in this
paper as an open source library at on GitHub (https://github.com/alexshtf/inc_prox_
pt/releases/tag/prox_pt_paper) Shtoff (Efficient implementation of incremental proxi-
mal point methods arXiv:2205.01457, 2024), along with examples which demonstrate
our implementation on a variety of problems, and reproduce the numerical experiments
in this paper. The pure Python reference implementation is not necessarily the most
efficient, but is a basis for creating efficient implementations by combining Python
with a native backend.
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A. Shtoff

1 Introduction

Incremental optimization is the ‘bread and butter’ of the theory and practice of modern
machine learning,wherewe aim tominimize a cost function of themodel’s parameters,
and can be roughly classified into two major regimes. In the stochastic optimization
regime it is assumed that the cost functions are sampled from a stationary distribution,
our objective is to design algorithms which minimize the expected cost, the theoretical
analysis typically produces bounds on the expected cost, and typical algorithms are
variants of the stochastic gradient method [31]. In the online regime cost functions
from a pre-defined family are chosen by an adversary, our objective is minimizing
the cumulative cost incurred by the sequence of the cost functions we observe, the
theoretical analysis tool is the performance relatively to a theoretical optimum called
regret, and typical algorithms are variants of the online gradient method [38], or follow
the leader [21] based methods operating on linearly approximated costs.

Both in the stochastic and online regime, these methods follow the following incre-
mental protocol: (a) observe the cost function incurred by a small subset of training
samples; (b) update the model’s parameters. Since the focus of this paper is on the
implementation of the computational steps of each iteration, the exact regime plays
no role, and thus we treat both regimes under the same umbrella, and refer to these
methods as incremental methods, e.g. incremental gradient descent.

To be concrete, the incremental gradient method having observed the cost function
f , which is usually interpreted as “make a small step in the descent direction”, reads:

xt+1 = xt − η∇ f (xt ),

but can equivalently written using the celebrated proximal view:

xt+1 = argmin
x

{
f (xt ) + 〈∇ f (xt ), x − xt 〉 + 1

2η
‖x − xt‖22

}
,

meaning “minimize a linear approximation of f , but stay close to xt”. A different
approach is using the cost directly instead of its linear approximation via the well-
known proximal operator [27, 28]:

xt+1 = proxη f (xt ) : = argmin
x

{
f (x) + 1

2η
‖x − xt‖22

}
, (PROX)

The idea is not new, and dates back to the first proximal iteration algorithm ofMartinet
[26], which was designed as a theoretical method for the non-incremental regime. In
the stochastic optimization regime this idea is known as stochastic proximal point, and
in the online regime as implicit online learning. Of course, we do not have to use the
cost itself, and f in (PROX)may be any approximation which is not necessarily linear.
In line with our aim to use the same terminology for stochastic and online algorithms,
we call the idea above incremental proximal iteration.

In the online regime, incremental proximal iteration was first proposed by Kivinen
and Warmuth [23], and later analyzed by Kulis and Bartlett [24] where it was termed
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‘implicit online learning’. Follow-up, such as Karampatziakis and Langford [22] and
Campolongo and Orabona [11], showed improved regret guarantees and robustness
in various settings.

In the stochastic regime, incremental proximal iteration was first proposed and ana-
lyzed for the finite-sum optimization problem by Bertsekas [9]. However, significant
advantages over first order methods were discovered later in the form of improved sta-
bilitywith respect to step-size choices [2, 5, 33].Consequently, hyper-parameter tuning
becomes significantly cheaper when using certain proximal point based methods to
train models, and consequently overall the computational cost and energetic footprint
of the training process is reduced, even if training for one specific hyper-parameter
configuration is more expensive.

Using a finer model instead of a linear approximation bears a cost—since f can be
arbitrarily complex, computing the proximal operator may be arbitrarily hard, or even
infeasible to do in practice. Thus, there is a trade-off between any advantage a finer
approximation may provide, and the difficulty of proximal operator computation.

In contrast to the above-mentioned works, rather than theoretical analysis of novel
high-level techniques, our aim is to substantially reduce the difficulty of computing
the proximal operator devising efficient algorithms to do so in a variety of setups, and
providing a Python reference implementing those algorithms. Our pure Python imple-
mentation is not necessarily the most efficient, since its main focus is demonstration
and readability, and in terms of speed we aim to be modest: up to a moderate constant
factor (10–20 times) slower than a competing gradient method. For some families of
functions f , computing proxη f may even be as cheap as a regular gradient step, but
others require solving a one-dimensional or a low-dimensional optimization problem,
and a naive Python implementation is far from optimal. Our Python implementation
is designed to demonstrate that efficient algorithms for computing the proximal step
need not be hard to implement, and encourage our readers to adapt or revise our
implementation to their needs. It is our aim, and hope, that the above contributions
make it easier to apply these methods in practice for researchers, while also motivate
more research by making numerical experimentation with incremental proximal point
methods easily accessible to the research community.

We’d like to emphasize that the aim of this paper is devising efficient algorithms
for implementing proximal operators of useful functions in machine learning, rather
than using proximal operators to derive better converging algorithms, in order to make
such implementations accessible to the research community. In addition to efficiency,
we use extensive mathematical theory to derive modular implementations, so that
researchers may compose the functions they desire from atomic building blocks. For
example, an L1 regularized logistic regression problem’s cost function is composed
of a linear function, composed onto the convex logistic function t → ln(1 + exp(t)),
and with the L1 regularizer. Thus, the code for training such models may look like
this:
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x = torch.zeros(x_star.shape)
# note the modular composition below
optimizer = IncRegularizedConvexOnLinear(x, Logistic(), L1Reg(0.01))
epoch_loss = 0.
for t, (a, b) in enumerate(my_data_set, start=1):

step_size = 1. / math.sqrt(t)
epoch_loss += optimizer.step(step_size, a, b)

Clearly, a proximal step is more computationally demanding than a gradient
step, thus our implementation is slower. We show, empirically, that for a variety
of problems, our implementation is a small constant factor slower than (proximal)
gradient steps, which is useful for both researchers and practitioners. From a practi-
cal perspective, since the works we cited above demonstrate, both theoretically and
empirically, that proximal point methods methods are very robust to the step-size
choice, hyper-parameter tuning becomes significantly cheaper, and thus such a library
of implementationsmay be useful in practice for reducing the computational resources
required for training a model. For researchers, an implementation whose run-time is
a small constant factor that of gradient descent is useful for conducting numerical
experiments for a reasonable computational cost for their new algorithms based on
proximal operators. The results in this paper were obtained on a 2019 MacBook Pro
with a 2.4 GHz 8-Core Intel Core i9 processor, and 32GB of RAM. The code for
reproducing the results is in our code repository.

Since this paper is also aimed at an audience partially unfamiliar with convex anal-
ysis theory, but coming from a more machine-learning oriented background. Hence,
we will briefly introduce the concepts we need throughout the paper, and refer to
additional literature for an in-depth treatment. Consequently, some derivations and
proofs in this paper may appear trivial to readers well versed in convex analysis and
optimization.

1.1 Notation

Scalars are denoted by lowercase Latin or Greek letters, e.g., a, α. Vectors are denoted
by lowercase boldface letters, e.g. a, and matrices by uppercase boldface letters, e.g.
A. Vector or matrix components are denoted like scalars, e.g. vi , Ai j .

1.2 Extended real-valued functions

Optimization problems are occasionally described using extended real-valued func-
tions, which are functions that can take any real value, in addition to the infinite values
−∞ and ∞. An extended real-value function φ : Rd → [−∞,∞] has an associated
effective domain dom(φ) = {x ∈ R

d : φ(x) < ∞}, and it’s natural to use such func-
tions to encode constrained optimization problems, where dom(φ) or dom(−φ) are
used to encode constraints of minimization or maximization problems. Throughout
this paper, we implicitly assume that any extended real-valued function φ is:

• proper—its −∞ nowhere, and dom(φ) 	= ∅, and
• closed—it’s epigraph epi(φ) = {

(x, t) ∈ R
d × R : φ(x) ≤ t

}
is a closed set.
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When φ is used in the context of a maximization problem, wemake those assumptions
about−φ. Any reasonable function of practical interest is proper, and the vast majority
of functions useful in practice are closed aswell. An extensive introduction to extended
real-valued function can be found, for example, in [7, Chapter 2].

1.3 Our contributions

In this work, we consider the following families of functions f when computing
proxη f . For each family of functions we show examples of machine learning models
for whose training it might be useful, devise an algorithm for computing its proximal
operator, provide a Python reference implementation, and experimentally measure its
efficiency. The families are described below.

A convex onto linear composition:

f (x) = h(aT x + b), (CL)

where h : R → (−∞,∞] is a convex extended real-valued function.
A regularized convex onto linear composition:

f (x) = h(aT x + b) + r(x), (RCL)

where h : R → (−∞,∞], and r : Rd → (−∞,∞] are convex extended real-
valued functions.
A mini-batch of convex onto linear compositions:

f (x) = 1

m

m∑
i=1

h(aTi x + bi ), (CL-B)

where h : R → (−∞,∞] is a convex extended real-valued function, and m is
small.

For the above families we develop a framework for computing the proximal operator,
based on convex duality, to achieve both algorithmic efficiency and software modu-
larity. We provide a pure Python reference implementation that aims to be moderately
efficient. For some problems it may be on par with SGD, whereas for others it may
be up to a few dozen times slower. Indeed, a pure Python reference implementation is
is not necessarily the most efficient one, and a better alternative in terms of efficiency
is a combination of C and Python, where C is used for loop-intensive tasks, such as
one-dimensional root finding. We chose PyTorch as our array module, due to easier
integration with auto-grad based model training code. The code we build in this paper
is available on GitHub at https://github.com/alexshtf/inc_prox_pt/ [34].

The remainder of the paper is organized as follows. After discussing previous work
below, we develop the initial version for our algorithmic framework for convex onto
linear compositions in Sect. 2. In that section, we also provide full code inline to let the
readers appreciate how software modularity is facilitated by our framework. Then, we
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proceed to extending our framework to regularized convex onto linear compositions
in Sect. 3, and to a mini-batch of convex onto linear compositions in Sect. 4. These
sections contain only the framework code, whereas the remaining code stemming from
these sections is available both on our GitHub repository, and in Appendices A and B
in this paper.

1.4 Previous work

There has been a significant body of research into the analysis of incremental proximal
iteration algorithms in various settings and approximating models, which in addition
to the examples we provided above also include [3, 4, 15–17, 20, 25, 35, 37]. However,
to the best of our knowledge, finding generic algorithms for efficient implementation
of incremental proximal algorithms received little attention, and the issue has been
partially addressed in the papers focused on the analysis.

Exceptions to the above rule are methods based on the proximal gradient approach,
original proposed by Passty [30], where the approximating function is of the form:

f (x) = aT x + r(x),

where r(x) is some ’simple’ function, usually a regularizer, for which a closed form
solution for the proximal operator of r is known. See, for example, the works of
Parikh and Boyd [29] and Beck [7] and references therein for examples. In this work
we consider a significantly broader family of functions, aimed at machine learning
applications, by building on existing theory in convex analysis, and functions whose
proximal operator is known.

Proximal operators of functions belonging to the (CL) family is covered to some
extent in the literature. For example, Kulis and Bartlett [24] shows an explicit formula
for the case when the ‘outer’ function h is the �2 cost h(t) = 1

2 t
2. The case of

h(t) = max(t, 0) has an explicit formula in the work of Asi and Duchi [5], while
h(t) = |t | is treated in [15]. Additional formulas can be found in [25]. In [17] the
authors provide an efficient Cython implementation for the Logistic and Hinge loss,
but not in a generic framework. While Ryu and Boyd [33] show an explicit method
for the entire family, they do not show how the method is derived, and provide neither
concrete examples, nor code. We treat this family using a uniform framework based
on duality, show its benefits from a software engineering perspective of decoupling
concerns, and provide explicit code for exampleswhich are useful inmachine learning.

The work of Ryu and Boyd [33] briefly discusses an algorithm for a simplified
version (RCL) case where the regularizer is assumed to be separable. Their idea is
similar to ours, but we devise an algorithm for amore general case, and provide explicit
examples and code which is useful for machine learning practitioners. Moreover,
they provide a ’switch to SGD heuristic’ for improving computational efficiency by
switching to a regular stochastic gradient method. This heuristic is orthogonal to the
contributions of our paper.
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Finally, the (CL-B) family is tackled in [2] for the special case of h(t) = max(0, t).
We devise a uniform framework for a broader family which covers a wide variety of
functions h, and give several examples which may be useful to practitioners.

2 A convex onto linear composition

In this section we first present some applications of the convex onto linear family
described in (CL), and then describe a generic framework for designing and imple-
menting algorithms for computing the proximal point of this function family.

2.1 Applications

Compositions of convex onto linear functions appear in a wide variety of classical
machine learning problems, but also appear to be useful for other applications as well.
This family is useful when training on one training sample in each iteration.
Linear regression In the simplest case, least-squares regression, we aim to minimize
a sum, or an expectation, of costs of the form

f (x) = 1

2
(aT x + b)2,

where (a, b) ∈ R
n ×R are the data of a training sample, and x is the model parameters

vector. In this case we have h(t) = 1
2 t

2. Different regression variants are obtained
by choosing a different function h, for example, using h(t) = |t | we obtain robust
regression:

f (x) = |aT x + b|,

and using the h(t) = max((p−1)t, pt) for some p ∈ (0, 1), we obtain linear quantile
regression.
Logistic regressionFor the binary classification problem,we are given an input features
a ∈ R

n and a label y ∈ {−1, 1}. The probability of y = 1 is modeled using

σ(x) = 1

1 + exp(−aT x)
,

where x is the model’s parameter vector. The cost incurred by each training sample is
computed using the binary cross-entropy loss:

f (x) =
{

− ln(σ (x)) y = −1

− ln(1 − σ(x)) y = 1,

which after some algebraic manipulation can be written as:

f (x) = ln(1 + exp(−yaT x)).
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Defining h(t) = ln(1 + exp(t)), we obtain the convex-onto-linear form.
The APROX model [5] A cost function φ which is bounded below, where w.l.o.g we
assume that it is bounded below by zero, is approximated by:

f (x) = max(φ(xt ) + 〈∇φ(xt ), x − xt 〉, 0).

It’s similar to a linear approximation, but it also incorporates knowledge about the
function’s lower bound: if a cost function is non-negative, its approximation should
also be. Taking h(t) = max(t, 0), a = ∇φ(xt ), and b = φ(xt ) − 〈φ(xt ), xt 〉, we
obtain the convex-onto-linear form (CL).
The prox-linear approximation Assume we are given a cost function of the form

φ(x) = h(g(x)),

where the outer function h is convex, and the inner function g is an arbirary function,
such as a deep neural network. For instance, suppose we’re solving a classification
problem using a neural network u, whose output is fed to the sigmoid, and then to
the binary cross-entropy loss. Similarly to the logistic regression setup above, given a
label y ∈ {−1, 1}, and an input w, we obtain:

φ(x) = ln(1 + exp(−yu(x,w)).

Taking h(t) = ln(1 + exp(t)) and g(x) = −yu(x,w) we have the desired form.
The idea of the prox-linear method is to linearly approximate the inner function

around the current iterate, while leaving the outer function as is. Thus, we obtain the
following approximation of the cost φ

f (x) = h(g(xt ) + 〈∇g(xt ), x − xt 〉),

and taking a = ∇g(x), and b = g(xt ) − 〈∇g(xt ), xt 〉 we obtain the desired convex-
onto-linear form (CL). See the recent work of Drusvyatskiy and Paquette [19] and
references therein for extensive analysis and origins of the method.

2.2 The proximal operator

Having shown a variety of potential applications, let’s explore the proximal operator
of convex-onto-linear functions. Its computation amounts to solving the following
problem:

min
x

h(aT x + b) + 1

2η
‖x − xt‖22. (1)

We’ll tackle this problem, and most of the remaining cost families, using the well
known convex duality framework, which we briefly introduce here for completeness.
An extensive introduction can be found in many optimization textbooks, such as [7].
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2.2.1 Convex duality

Wemake a brief introduction to a subset of convex duality theory for unfamiliar readers
who would like to understand how we built our framework and how to extend it for
their own purposes. Sincewe don’t needmost generic convex duality theory this paper,
we introduce a simplification. Suppose we’re given an optimization problem:

min
x

f (x) s.t. Ax = b, (Q)

where A ∈ R
m × R

n is a matrix, and f : Rn → (−∞,∞] is a closed and convex
extended real-valued function. Define

q(s) = inf
x

{
L(x, s) : = f (x) + sT (Ax − b)

}
,

namely, we replace the j th linear constraint by a “price” s j for its violation, and define
q to be the optimal value as a function of these prices. The modified cost function L
is called the Lagrangian associated with the constrained problem (Q).

First, it’s apparent that q(s) is concave, since it is a minimum of linear functions of
s. Moreover, it’s easy to see that q(s) is a lower bound for the optimal value of (Q),
using the simple observation that minimizing over a subset of Rn produces a value
that is higher or equal to the minimization over the entire space:

q(s) = inf
x

{
f (x) + sT (Ax − b)

}

≤ inf
x

{
f (x) + sT (Ax − b) : Ax = b

}

= inf
x

{ f (x) : Ax = b}

The problem of finding the “best” lower bound is called the dual problem associated
with (Q), namely:

max
s

q(s) s.t. q(s) > −∞, (D)

whereas the original problem (Q) is called the primal problem. A well known result
in convex analysis is that with slight technical conditions, the optimal values of the
primal and the dual problems coincide:

Theorem 1 (Strong duality) Suppose that f is a convex closed extended real-valued
function, that the optimal value of (Q) is finite, namely,

fopt = inf
x

{ f (x) : Ax = b} > −∞,

and that there exists some feasible solution x̂. Then,

(i) The optimal value of the dual problem (D) is attained at some optimal solution s∗,
and it is equal fopt.
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(ii) The optimal solutions of (Q) are x∗ ∈ argminx L(x, s∗) which are feasible. In
particular, if L(x, s∗) has a unique minimizer, then it must be an optimal solution
of (Q).

Proof (i) is a special case of Theorem A.1 and (ii) is a special case of Theorem (ii) in
[7]. 
�

The strong duality theorem has an important consequence for the case when the
dual problem (D) significantly easier to solve than the primal problem (Q). Having
obtained its optimal solution s∗, we can recover the optimal solution of the primal
problem by minimizing the Lagrangian function L(x, s∗) over x.

2.2.2 Employing duality

Duality requires a constrained optimization problem, whereas the proximal operator
in Eq. (1) aims to solve an unconstrained problem. However, constraints are easily
added with the help of an auxiliary variable, and we can equivalently solve:

min
x,z

h(z) + 1

2η
‖x − xt‖22 s.t. z = aT x + b

The dual objective is therefore:

q(s) = inf
x,z

{
h(z) + 1

2η
‖x − xt‖22 + s(aT x + b − z)

}

= min
x

{
1

2η
‖x − xt‖22 + saT x

}

︸ ︷︷ ︸
A

+ inf
z

{h(z) − sz}
︸ ︷︷ ︸

B

+sb

The term denoted by A is a strictly convex quadratic function, whose minimizer is

x∗ = xt − ηsa, (2)

and the minimum itself is

A = −η‖a‖22
2

s2 + (aT xt )s.

The term denoted by B can be alternatively written as

B = − sup
z

{sz − h(z)} = −h∗(s),

where h∗ is a well-known object in optimization called the convex conjugate of h. A
catalogue of pairs of convex conjugate functions is available in a variety of standard
textbooks on optimization, e.g. [7]. For completeness, in Table 1 we show conjugate
pairs which are useful for the machine-learning oriented examples in this paper.
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Table 1 Example convex conjugate pairs

h(z) dom(h) h∗(s) dom(h∗) Useful for

1
2 z

2
R

1
2 s

2
R Linear least squares

ln(1 + exp(z)) R
s ln(s) + (1 − s) ln(1 − s)

where 0 ln(0) ≡ 0
[0, 1] Logistic regression

max(z, 0) R

{
0 s ∈ [0, 1]
∞ else

[0, 1] AProx model, Hinge loss

Convex conjugates possess two important properties. First, under mild technical
conditions, we have (h∗)∗ = h, i.e. the bi-conjugate of a convex function is the
function itself. These conditions hold for most functions we care about in practice,
including the functions in Table 1. Second, the conjugate is always convex.

Summarizing the above, the dual problem aims to solve the following one dimen-
sional and strongly concave maximization problem:

max
s

q(s) ≡ − η‖a‖22
2︸ ︷︷ ︸
α
2

s2 + (aT xt + b)︸ ︷︷ ︸
β

s − h∗(s). (3)

Strong concavity implies the existence of a unique maximizer s∗, while the strong
duality theorem implies we can recover the proximal operator we seek by substituting
the above maximizer into Eq. (2).

We implement the above idea the IncConvexOnLinear class below using the
PyTorch library.

import torch

class IncConvexOnLinear:
def __init__(self, x, h):

self._h = h
self._x = x

def step(self, eta, a, b):
"""
Performs the optimizer’s step, and returns the loss incurred.
"""
h = self._h
x = self._x

# compute the dual problem’s coefficients
alpha = eta * torch.sum(a**2)
beta = torch.dot(a, x) + b

# solve the dual problem
s_star = h.solve_dual(alpha.item(), beta.item())

# update x
x.sub_(eta * s_star * a)

return h.eval(beta.item())
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def x(self):
return self._x

Note, that from a software engineering perspective, we encode the function h using
an objectwhich has twooperations: compute the value of h, and solve the dual problem.
In the next sub-sections we will implement three such objects: HalfSquared for
h(z) = 1

2 z
2,Logistic for h(z) = ln(1+exp(z)), and Hinge for h(z) = max(z, 0).

As an example, applying the implicit online learning idea of Kulis and Bartlett [24]
to the linear least squares problem looks like this:

x = torch.zeros(d)
optimizer = IncConvexOnLinear(x, HalfSquared())
for t, (a, b) in enumerate(my_data_set):

eta = get_step_size(t)
optimizer.step(eta, a, b)

print(’The parameters are: ’ + str(x))

2.2.3 The half-squared function

For h(z) = 1
2 z

2, according to Table 1, we have h∗(s) = 1
2 s

2, and thus the dual problem
in Eq. (3) amounts to maximizing

q(s) = −α

2
s2 + βs − 1

2
s2 = −1 + α

2
s2 + βs.

Hence, in this case q(s) is a simple concave parabola, maximized at

s∗ = β

1 + α
.

Consequently, our HalfSquared class is:

import torch
import math

class HalfSquared:
def solve_dual(self, alpha, beta):

return beta / ( 1 + alpha)

def eval(self, z):
return 0.5 * (z ** 2)

2.2.4 The logistic function

For h(z) = ln(1+ exp(z)), according to Table 1, the dual problem in Eq. (3) amounts
to maximizing

q(s) = −α

2
s2 + βs − s ln(s) − (1 − s) ln(1 − s). (4)

The following simple result paves the way towards maximizing q.
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Proposition 1 The function q defined in Eq. (4) has a unique maximizer inside the
open interval (0, 1).

Proof Note that dom(q) = [0, 1], thus maximizing q is done over a compact interval.
Its continuity with the Weirstrass theorem ensures that it has a maximizer in [0, 1],
and its strict concavity ensures that the maximizer is unique. The derivative q ′(s) =
−αs + β − ln(s) + ln(1 + s) is continuous, decreasing, and satisfies:

lim
s→0

q ′(s) = ∞, lim
s→1

q ′(s) = −∞.

Hence, there must be a unique point in the open interval (0, 1) where q ′(s) = 0. Since
q is concave, that point must be the maximizer. 
�

Proposition 1 implies that we can maximize q by employing any root finding algo-
rithm to find a zero of its derivative. Its initial interval [l, u] can be found by:

• l = 2−k for the smallest positive integer k such that q ′(2−k) > 0.
• u = 1 − 2−k for the smallest positive integer k such that q ′(1 − 2−k) < 0.

For our reference implementation, we chose to rely on Brent’s method [10, Chapter 5]
readily available in the scipy package. The method finds a ε-approximate root in
O(ln( 1

ε
)) iterations in the worst case, but is typically significantly faster than naive

bisection. The resulting Logistic class is listed below:

from scipy.optimize import brentq

class Logistic:
def solve_dual(self, alpha, beta, tol = 1e-16):

def qprime(s):
return -alpha * s + beta + math.log(1-s) - math.log(s)

# compute [l,u] containing a point with zero qprime
l = 0.5
while qprime(l) <= 0:

l /= 2

u = 0.5
while qprime(1 - u) >= 0:

u /= 2
u = 1 - u

solution = brentq(qprime, l, u)
return solution

def eval(self, z):
return math.log(1 + math.exp(z))

2.2.5 The Hinge function

For h(t) = max(0, t), according to Table 1, the dual problem in Eq. (3) amounts to
solving the following constrained problem:

max
s

q(s) = −α

2
s2 + βs s.t. s ∈ [0, 1].
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The above is a maximum of a concave parabola over an interval, and it’s easy to see
that its maximizer is

s∗ = max
(
0,min

(
1,

β

α

))
.

The resulting Hinge class is therefore:

class Hinge:
def solve_dual(self, alpha, beta):

return max(0, min(1, beta / alpha))

def eval(self, z):
return max(0, z)

2.3 Empirical evaluation

To evaluate the efficiency of our implementation, we compare it against a regular
incremental gradient method. Our algorithms in this section are meant to work on
one training sample at a time, but incremental gradient methods are usually used with
mini-batches of samples. Thus, we’d like to see how competitive is our implementation
against incremental gradient methods with various mini-batch sizes, including a mini-
batch size of one sample, to appreciate the usefulness of our implementation as a tool
by the research community.

We applied our evaluation on the Logistic regression and Least Squares problems,
one uses the Logistic class whereas the other uses the HalfSquared class. We
measured the total time to make one epoch over data-sets of various dimensions and of
various lengths, and plotted a regression line, whose slope allows us to convince our-
selves than our implementation is slower than a regular incremental gradientmethod by
amodest constant factor. The results are plotted in Fig. 1. To summarize, the incremen-
tal proximal point method we devised here is roughly 2–8 times slower, per iteration,
than an incremental gradient method when mini-batches are used, but faster than an
incremental gradient method without mini-batching. It’s also interesting to point out
that without mini-batching, our implementation is faster than PyTorch, mainly due to
an overhead of its AutoGrad mechanism with small mini-batches. Therefore, we do
not believe it to be a “fair” comparison, but merely a part of the demonstration that
our implementation is good enough to be useful.

To convince ourselves that our implementation is indeed correct, we reproduce the
results seen in [3] which show that proximal-point methods are much more robust to
step-size choice. For randomly generated logistic regression and least-squares prob-
lems, we solve both problems using a range of step-sizes by performing one epoch
over a random shuffle of the data, and measure the training loss of that epoch. We
repeat the experiment for each step-size 30 times to obtain a confidence band around
the results. The problems are of dimension 100, and the data-set size is 100,000. So
ideally, one epoch should simulate a large random sample from a stationary distri-
bution. The results are plotted in Fig. 2. Indeed, the results look similar to what the
authors of Asi and Duchi [3] have obtained.
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Fig. 1 Execution speed evaluation of incremental proximal point. Each point is a timing of a pair of
experiments on the same problem, where the x coordinate is the execution time of one SGD epoch, whereas
the y coordinate is the execution time of one proximal point epoch. The corresponding line is a linear
regression line, with its slope α labeled, to appreciate the ratio between the SGD and proximal point
execution times, on average. The columns are various problem dimensions, from 1000 to 6000, and the
rows are various mini-batch sizes for the incremental gradient method. We can see by the first row, for
example, that without mini-batching the proximal-point method is actually faster than an incremental
gradient method (α > 0) based on PyTorch’s automatic differentiation. In the last row, for example, we
can see that for batch sizes of 32 samples the incremental proximal point method is roughly 4 times slower
for least-squares problems and 6 times slower for logistic regression problems compared to an incremental
gradient method

2.4 Summary

Typical optimizers formachine learning rely on awell-established tool fromanalysis—
the gradient. Using duality, we were able to design an optimizer for the convex onto
linear setup using another well established tool—the convex conjugate. Moreover,
duality allowed us to decouple the complexity associated with the convex function
h into a separate class whose only purpose is using the conjugate to solve a one
dimensional optimization problem. Thus the framework is extensible with additional
functions h, and designing a class for such h comprises of two steps: obtaining the
conjugate h∗, preferably from a textbook, and figuring out how to solve the resulting
dual problem.
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Fig. 2 Reproduction of the stability results of Asi and Duchi [3]. Indeed, for both logistic regression and
least squares problems, the training loss of an incremental proximal-point method is significantly more
stable w.r.t the step-size choice, reinforcing the claim that with an incremental proximal-point method we
can just “make an few educated guesses” instead of performing an extensive hyper-parameter search for
the best step-size

3 Regularized convex onto linear composition

Often, machine learning models are trained by using a regularized loss function. Thus,
the applications of the regularized convex-onto-linear model (RCL) are identical to
the described in Sect. 2.1, e.g. regularized linear least squares, or regularized logistic
regression. It’s also interesting to note that, using h(z) = max(0, z) and r(x) = μ‖x‖22
we can also formulate the problem of training an SVM [14]. Since the applications are
obvious, we dive directly into the computation of the proximal operator, by solving

min
x

h(aT x + b) + r(x) + 1

2η
‖x − xt‖22, (5)

where h : R → (−∞,∞], r : Rd → (−∞,∞], are convex extended real-valued
functions. We also assume that the regularizer r is “simple”, meaning that we can
efficiently compute its proximal operator proxr (x). Explicit formulae for the proximal
operators can be found in a variety of textbooks on optimization, e.g. [7, Chapt. 6].
Examples include the squared Euclidean norm r(x) = μ

2 ‖x‖22, the Euclidean norm
r(x) = μ‖x‖2, or the �1 norm r(x) = μ‖x‖1. For completeness, we include a short
table of proximal operators of the above-mentioned functions in Table 2.

3.1 A dual problem

Following the path paved in Sect. 2, we begin fromderiving a dual to the problem in Eq.
(5). Adding the auxiliary variable z = aT x+b, we obtain the equivalent optimization
problem

min
x,z

h(z) + r(x) + 1

2η
‖x − xt‖22 s.t. z = aT x + b
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Table 2 Proximal operators of commonly used regularizers

r(x) proxμr (x) Remarks

‖x‖1 max(|x| − μ1, 0) · sgn(x) Absolute value, max, sgn, and · are component-wise
operations. Available as the softshrink function
in PyTorch

1
2 ‖x‖22 1

1+μ
x

‖x‖2
(
1 − μ

max(μ,‖x‖2)
)
x

Minimizing the Lagrangian, we obtain:

q(s) = inf
x,z

{
L(x, z, s) ≡ h(z) + r(x) + 1

2η
‖x − xt‖22 + s(aT x + b − z)

}

= inf
x

{
r(x) + 1

2η
‖x − xt‖22 + saT x

}
+ inf

z
{h(z) − sz} + sb (6)

The remaining challenge is the computing the first infimum. To that end, we need
to introduce another well-known concept in optimization—a close relative of the
proximal operator.

Definition 1 (Moreau envelope [28]) Let φ : Rn → (−∞,∞] be a convex extended
real-valued function. The Moreau envelope of φ with parameter η, denoted by Mηφ,
is the function:

Mηφ(x) = min
u

{
φ(u) + 1

2η
‖u − x‖22

}
.

Since the proximal operator is the minimizer of the minimum in the definition above,
which isMoreau proved that is always attained, an alternative way to write theMoreau
envelope of a function is obtained by replacing u = proxηφ(x) inside theminimization
objective above:

Mηφ(x) = φ(proxηφ(x)) + 1

2η
‖ proxηφ(x) − x‖22. (7)

Thus, whenever we have an explicit formula of the proximal operator, we also have
an explicit formula of the Moreau envelope. How does it help us with our challenge
of minimizing Q over x? The following proposition provides the answer.

Proposition 2 Let q(s) and the Lagrangian L(x, z, s) be as defined in Eq. (6). Then,

q(s) = Mηr(xt − ηsa) + (aT xt + b)s − η‖a‖22
2

s2 − h∗(s).

Moreover, the unique minimizer of the Lagrangian L w.r.t x is

x∗ = proxηr (xt − ηsa).
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Proof Recall, that for any x, y we can open the squared Euclidean norm using the
formula

1

2
‖x + y‖22 = 1

2
‖x‖22 + xT y + 1

2
‖y‖22,

and re-arranging the above leads to the square completion formula

1

2
‖x‖22 + xT y = 1

2
‖x + y‖22 − 1

2
‖y‖22.

Using the above two formulas, we compute:

r(x) + 1

2η
‖x − xt‖22 + saT x

= 1

η

[
ηr(x) + 1

2
‖x − xt‖22 + ηsaT x

]
← Factoring out

1

η

= 1

η

[
ηr(x) + 1

2
‖x‖22 − (xt − ηsa)T x + 1

2
‖xt‖22

]
← opening

1

2
‖x − xt‖22

= 1

η

[
ηr(x) + 1

2
‖x − (xt − ηsa)‖22 − 1

2
‖xt − ηsa‖22 + 1

2
‖xt‖22

]
← square completion

=
[
r(x) + 1

2η
‖x − (xt − ηsa)‖22

]
− 1

2η
‖xt − ηsa‖22 + 1

2η
‖xt‖22 ← Multiplying by

1

η

=
[
r(x) + 1

2η
‖x − (xt − ηsa)‖22

]
+ (aT xt )s − η‖a‖22

2
s2 ← re-arranging

Plugging the above expression into the formula of q(s), we obtain:

q(s) = inf
x

{
r(x) + 1

2η
‖x − (xt − ηsa)‖22

}
+ (aT xt + b)s − η‖a‖22

2
s2 − h∗(s)

= Mηr(xt − ηsa) + (aT xt + b)s − η‖a‖22
2

s2 − h∗(s)

Moreover, since the infimum over x above is attained, we can replace it with a mini-
mum, and by definition the minimizer is

x∗ = proxηr (xt − ηsa)


�The significance of Proposition 2 is due to the fact that we can design an algorithm
for computing the proximal operator of regularized convex onto linear losses using
three textbook concepts: the Moreau envelope of r , the convex conjugate of h, and the
proximal operator of r . The only thing we need to manually derive ourselves is a way
to maximize the dual objective q. The basic method, directly applying Proposition 2
and the strong duality theorem (Theorem 1) consists of the following three steps:

• Form q(s) = Mηr(xt − ηsa) + (aT xt + b)s − η‖a‖22
2 s2 − h∗(s).
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• Solve the dual problem: find a maximizer s∗ of q(s)
• Compute prox f (xt ) = proxηr (xt − ηs∗a)

3.2 Computing the proximal operator

An important aspect of solving the dual problem is figuring out dom(−q), since this
set encodes the constraints of the dual problem. It turns out that Moreau envelopes
are finite everywhere [7, Theorem 6.55], and thus dom(−q) = dom(h∗). Moreover,
the strong duality theorem (Theorem 1) ensures that q attains its maximum, so a
maximizer s∗ ∈ dom(h∗) must exist.

The dual problem is one dimensional, and there is a variety of reliable algorithms
and their implementations formaximizing such functions. Indeed, this timewewill not
bother implementing a procedure to maximize q, but use a readily available imple-
mentations in the SciPy package. When dom(−q) is a compact interval, we will
employ the scipy.optimize.fminbound function on −q, which uses Brent’s
method [10, Chapter 5], and requires us to provide a function, and a compact interval
where its maximizer must lie.

When the interval dom(−q) is not compact, we will have to locate a compact inter-
val which contains amaximizer of q. To that end, wewill require h∗ to be continuously
differentiable, strictly convex, anddom(h∗) to be open.Theobject representingh needs
to provide two sequences l1 > l2 > . . . converging to the left endpoint of dom(−q),
and u1 < u2 < . . . converging to the right endpoint of dom(−q). We will shortly see
the details, but the general idea of using these sequences is similar to our search for an
initial interval in case of theLogistic classwe implemented in Sect. 2.2.4,where the
sequenceswere 2−1, 2−2, . . . , and 1−2−1, 1−2−2, . . . . Having found an interval con-
taining a maximizer, we will, again, employ the scipy.optimize.fminbound
on −q function to find our maximizer.
Remark Note, that the Scipy’s scipy.optimize.minimize_scalar function
also supports finding the initial bracket for Brent’s method when we don’t possess a
compact interval containing a minimizer. However, as of the time of writing of this
paper, the minimize_scalar function is not able to handle half-infinite, such as
[0,∞). It supports either a compact domain, or the entire real line. Thus, to be as
generic as possible, we resort to finding the initial interval ourselves using the above-
mentioned pairs of sequences.
The case of a compact domain To employ Brent’s method for finding a maximizer s∗
of q, we need to be able to evaluate the function q. To that end, we require an oracle
for evaluating the Moreau envelope of r , and the convex conjugate h∗. Moreover,
to recover the solution of the primal problem, we need an oracle for computing the
proximal operator of r .
The case of a non-compact domain This case requires us to employ an additional result
about Moreau envelopes.

Proposition 3 Let φ : Rd → (−∞,∞] be a convex extended real-valued function,
and let Mμφ be its Moreau envelope. Then Mμφ is continuously differentiable with
gradient
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∇Mμφ(x) = 1

μ

(
x − proxμφ(x)

)
(8)

Proof See [7, Theorem 6.55]. 
�
Recall, that we require h∗ to be continuously differentiable, strictly convex, and

dom(h∗) to be open. Using (8) and the chain rule to compute the derivative of q(s),
and then simplifying, we obtain:

q ′(s) = aT proxηr (xt − ηsa) − h∗′
(s) + b (9)

For the non-compact domain case, we will require that there is a unique maximizer s∗
in the interior of dom(h), which also implies that q ′(s∗) = 0. The above is satisfied
when, for example, when h∗ is strictly convex and dom(h∗) is open, or when h∗ is a
convex function of Legendre type [32, Sect. 26], which is a condition satisfied by, for
example, by h∗(s) = 1

2 s
2 in the least-squares setup. Strict convexity of h∗ implies that

q ′ is strictly decreasing, and thus any point l < s∗ has a positive derivative, whereas
any u > s∗ has a negative derivative. Thus, we can find an interval [l, u] containing
s∗ just by scanning to the left until we find a point whose derivative is positive, and
to the right until we find a point whose derivative is negative. And that’s exactly why
we need the sequences {lk}∞k=1 and {uk}∞k=1 for - to tell us how to scan towards the left
and right boundaries of dom(−q) = dom(h∗). For example, if dom(h∗) = [1,∞),
we may scan towards the left end-point using the sequence �k = 1+2−k , and towards
the right-endpoint, which is infinity, using the sequence uk = 1 + 2k .

It is important to note that computing q ′ requires evaluating the proximal operator
of the regularizer r . Therefore, each iteration in the search for the optimal s∗ depends
on the dimension d, and hence is typically significantly slower than the convex onto
linear setting without regularization, that was discussed in Sect. 2. Of course, it would
be possible to construct a dedicated procedure for each combination of outer function
h and regularizer r , which may occasionally be fast, but it defeats one of the main
purposes of our framework - its modularity.

The fact that the computational complexity of each iteration is linear in the dimen-
sion suggests that we could have employed an accelerated first-order method, such as
[8], directly on the primal proximal sub-problem. To see why we chose not to pursue
this direction, note that Brent’s method [10] used by fminbound in our code enjoys
superlinear convergence (of degree 1.67) in the vicinity of the optimum. Accelerated
first-order methods have a convergence rate that is linear, at best, when their objective
is strongly convex. This suggests that Brent’s method, in addition to fitting well into
our dual decomposition approach, is also potentially more efficient due to reduced
iteration count. We chose to rely on the fact that for one-dimensional problems we
have specialized methods that are often faster than methods that work in arbitrary
dimensions.
The implementation Combining the two cases above, here is an implementation of our
optimizer.
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from scipy.optimize import fminbound
import torch

class IncRegularizedConvexOnLinear:
def __init__(self, x, h, r):

self._x = x
self._h = h
self._r = r

def step(self, eta, a, b):
x = self._x
h = self._h
r = self._r

if torch.is_tensor(b):
b = b.item()

lin_coef = (torch.dot(a, x) + b).item()
quad_coef = (eta / 2.) * a.square().sum().item()
loss = h.eval(lin_coef) + r.eval(x).item()

def qprime(s):
prox = r.prox(eta, x - eta * s * a)
return torch.dot(a, prox).item() \

- h.conjugate_prime(s) \
+ b

def q(s):
return r.envelope(eta, x - eta * s * a) \

+ lin_coef * s \
- quad_coef * (s ** 2) \
- h.conjugate(s)

if h.conjugate_has_compact_domain():
l, u = h.domain()

else:
# scan left until a positive derivative is found
l = next(s for s in h.lower_bound_sequence() if qprime(s) > 0)

# scan right until a negative derivative is found
u = next(s for s in h.upper_bound_sequence() if qprime(s) < 0)

min_result = fminbound(lambda s: -q(s), l, u)
s_prime = min_result.x
x.set_(r.prox(eta, x - eta * s_prime * a))

return loss

Let’s look at a usage example. Assuming that h(z) = 1
2 z

2 is represented using the
HalfSquared class, and r(x) = ‖x‖1 is represented using the L1Reg class, we
can perform an epoch of training an L1 regularized least-squares model (Lasso) with
regularization parameter 0.1 using the following code:

x = torch.zeros(d)

optimizer = IncRegularizedConvexOnLinear(x, HalfSquared(), L1Reg(0.1))
epoch_loss = 0.
for t, (a, b) in enumerate(get_training_data()):

eta = get_step_size(t)
epoch_loss += optimizer.step(eta, a, b)

print(’Model parameters = ’, x)
print(’Average epoch loss = ’, epoch_loss / t)
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We believe that Sect. 2 demonstrated how to modularity is achieved, and there-
fore the implementation of the HalfSquared, Logistic, and Hinge classes
for the functions h representing various losses, and of the L1Reg and L2Reg, and
L2NormReg classes for regularization with ‖ · ‖1, ‖ · ‖22, and ‖ · ‖2 are in Appendix
A.

3.3 Empirical evaluation

Before evaluating the efficiency empirically, a word about the computational complex-
ity is in place. Computing the proximal step requires solving a one-dimensional dual
problem using an optimization algorithm over the real line. The algorithms employed
by the fminbound function typically achieve ε accuracy in terms of distance to a
minimize using O(ln( 1

ε
)) function evaluations. By default, SciPy’s implementation

achieves ε = 10−10, meaning that ln(ε−1) ≈ 23. However, this time, evaluating q(s)
requires computing the proximal operator of our regularizer, which entails a computa-
tional complexity of O(n) for x ∈ R

n . This is in contrast to the convex-onto-linear case
we saw in Sect. 2, where evaluating q(s)was independent of the problem’s dimension.
The computational cost per iteration is dominated by few dozen evaluations of proxηr ,
and thus we expect it to be a few dozen times slower than a regular proximal-gradient
step (without mini-batches).

As was the case with the convex-onto-linear setting, We applied our speed eval-
uation on the Logistic regression and Least Squares problems, both with L1 and L2
regularization.Wemeasured the total time to make one epoch over data-sets of various
dimensions and of various lengths, and plotted a regression line, so that we can indeed
convince ourselves than our implementation is slower than a regular incremental gra-
dient method by a small-enough constant factor. The results are plotted in Fig. 3. As
a summary, without mini-batching, the proximal-point method is roughly 5–10 times
slower than its proximal-gradient counterpart. However, mini-batches may make an
incremental gradient method computational faster by a factor of 20–150, depending on
the problem. As we pointed out, this slowdown is mainly caused by the significantly
costlier solution of the dual problem. Even though it appears to be a one-dimensional
optimization problem, the computational complexity of evaluating the derivative of
the one-dimensional objective does depend on the problem dimension.

Regarding correctness, we again adopt a similar strategy to the convex-onto-linear
setting, and solve various problem types with a variety of step-sizes, and see the
achieved training loss of one epoch over a data-set of 10,000 samples in R

100. The
results are plotted in Fig. 4.

3.4 Summary

Throughout this paper, our aim is to design implementations of proximal point algo-
rithms with two objectives in mind: (a) make the algorithms extensible by decoupling
concerns into separate modules, and (b) use existing text-book concepts and software
libraries to help build these modules. In the case of convex onto linear composition,
we were able to decouple the function h and the regularizer r into separate modules
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Fig. 3 Execution speed evaluation of incremental proximal point. Each point is a timing of a pair of
experiments on the same problem, where the x coordinate is the execution time of one SGD epoch, whereas
the y coordinate is the execution time of one proximal point epoch. The columns are various problem
dimensions, and the rows are various mini-batch sizes for the incremental proximal gradient method. The
columns are various problem dimensions, and the rows are various mini-batch sizes for the incremental
proximal gradientmethod.We can see by the first row, for example, that withoutmini-batching the proximal-
point method is 5–10 times slower than its proximal-gradient variant. In the last row, for example, we can
see that for batch sizes of 32 samples the incremental proximal point method is roughly 20–150 times
slower, depending on the problem and the dimension

which provide oracles to a central algorithm. The oracles are implemented using three
textbook concepts: the convex conjugate of h, the Moreau envelope of r , and the prox-
imal operator of r . Using textbook concepts allows easier extension of our library with
additional functions h and r , since we stand on the shoulders of the giants who already
developed tables and calculus rules of convex conjugates and proximal operators for
a variety of useful functions.

An alternative approach to using duality could be using a generic solver package,
such asCVXPY [18], to directly solve the proximal sub-problem. The numerical exper-
iments of the next section show that this approach is significantly slower in practice
for the setting at hand, where we aim to learn from one sample at a time, rather than
from a mini-batch of samples. Indeed, our solver is roughly 5–10 times slower than
SGD, whereas the CVXPY approach for small batch sizes appears to be at least 30
times slower (see Fig. 5b).

Another alternatives for solving the proximal sub-problem could be primal-dual
hybrid gradient methods, such as the celebrated Chambolle–Pock method [12], and
their accelerated variants [13]. However, this would result in a radically different
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Fig. 4 Reproduction of the stability results of Asi and Duchi [3]. Indeed, for both logistic regression and
least squares problems, with both L1 and L2 regularization, the training loss of an incremental proximal-
point method is significantly more stable w.r.t the step-size choice than the incremental proximal-gradient
method, reinforcing the claim that with an incremental proximal-point method we can just “make an few
educated guesses” instead of performing an extensive hyper-parameter search for the best step-size

decomposition into software components than our duality-based approach. Therefore,
these approaches are out of the scope of this paper, but are worth exploring in a future
work.

4 Mini-batch convex onto linear composition

The mini-batch convex onto linear compositions are useful when extending the sce-
narios described in Sect. 2.1 to handle mini-batches of data, instead of individual data
points. For example, suppose we’re aiming to minimize

F(x) = 1

N

N∑
i=1

fi (x),

and that the size of the data-set N is huge. A standard practice with incremental
optimization methods, such as SGD, is to use mini-batches of items: a mini-batch
B ⊆ {1, . . . , N } is chosen in each iteration, and the model’s parameters are updated
using the gradient of the function
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FB(x) = 1

|B|
∑
j∈B

fi (x).

The idea above is equivalent to using a linear approximation of FB in each iteration.
For example, the steps of mini-batch SGD are:

xt+1 = xt − η∇FB(xt ) = argmin
x

{
FB(xt ) + 〈∇FB(xt ), x − xt 〉 + 1

2η
‖x − xt‖22

}
.

If our functions fi are of the form h(aTi x + bi ) with h being a convex extended
real-valued function, or if we chose to approximate fi using such functions, then by
replacing the linear approximation xt+1 is computed by solving

xt+1 = argmin
x

{
1

|B|
∑
i∈B

h(aTi x + bi ) + 1

2η
‖x − xt‖22

}
.

Assuming w.l.o.g that B = {1, . . . ,m}, the above is exactly of the form in Eq. (CL-B).
As was the case with our previous derivations, convex duality plays a central role in
computing the above proximal operator. We note that an alternative formulation for
mini-batching could be using the proximal average [6, 36], rather than the arithmetic
average of functions. In such a formulation, the proximal operator of the mini-batch
reduces to the average of the proximal operators of the individual functions, and can be
computed using the tools developed in Sect. 2. However, we also note that the interplay
of such a formulation with the stochastic optimization setting is not clear - what is the
bias, if any, of the proximal average as an estimator for the mean loss?

4.1 A dual problem

Embedding the vectors aT1 , . . . , aTm into the rows of the matrix A, and the scalars
b1, . . . , bm into the vector b, and introducing the auxiliary variable z = Ax + b, our
optimization problem can be equivalently written as

min
x,z

1

m

m∑
i=1

h(zi ) + 1

2η
‖x − xt‖22 s.t. z = Ax + b.

The corresponding dual problem aims to maximize

q(s) = inf
x,z

{
1

m

m∑
i=1

h(zi ) + 1

2η
‖x − xt‖22 + sT (Ax + b − z)

}

= inf
x

{
(AT s)T x + 1

2η
‖x − xt‖22

}

︸ ︷︷ ︸
(∗)

+
m∑
z=1

inf
zi

{
1

m
h(zi ) − zi si

}

︸ ︷︷ ︸
(∗∗)

+sTb
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The term denoted by (*) above, despite its “hairy” appearance, is the minimum of a
simple convex quadratic function, which is computed by comparing the gradient of
the term inside the inf with zero, which leads to

x = xt − ηAT s, (10)

and the corresponding minimum is

(∗) = −η

2
‖AT s‖22 + (Axt )T s.

The terms denoted by (**) can be equivalently written as

inf
zi

{
1

m
h(zi ) − zi si

}
= − 1

m
sup
zi

{(msi )zi − h(zi )} = − 1

m
h∗(msi ),

where, again, h∗ denotes the convex conjugate of h. To summarize, the dual aims to
solve:

max
s

q(s) = −η

2
‖AT s‖22 + (Axt + b)T s − 1

m

m∑
i=1

h∗(msi ).

4.2 Computing the proximal operator

Recall, that the strong duality theorem (Theorem 1) ensures that q has a maximizer,
and that Eq. (10) recovers the primal minimizer, which is what we aim to compute.
Thus, computing our proximal operator amounts to the following three steps:

1. Form q(s) = − η
2‖AT s‖22 + (Axt + b)T s − 1

m

∑m
i=1 h

∗(msi )
2. Solve the dual problem: find a maximizer s∗ of q(s)
3. Recover the desired solution: xt − ηAT s∗

Note, that in the mini-batch setting, the dual problem is no longer one dimensional,
but when the size of the mini-batch m is small, it is still a low dimensional problem,
whose solution should be pretty quick. As was the case in Sect. 2, our representation of
the function h amounts to a class which provides two oracles: (a) evaluate the function
h, and (b) maximize functions of the form 1

2‖Ps‖22 + cT s − 1
m

∑m
i=1 h

∗(msi ). Let’s
first implement a generic optimizer, and then dive into the implementation of concrete
functions h.

import torch

class MiniBatchConvLinOptimizer:
def __init__(self, x, phi):

self._x = x
self._phi = phi

def step(self, step_size, A_batch, b_batch):
# helper variables
x = self._x
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phi = self._phi

# compute dual problem coefficients
P = math.sqrt(step_size) * A_batch.t()
c = torch.addmv(b_batch, A_batch, x)

# solve dual problem
s_star = phi.solve_dual(P, c)

# perform step
step_dir = torch.mm(A_batch.t(), s_star)
x.sub_(step_size * step_dir.reshape(x.shape))

# return the mini-batch losses w.r.t the params before making the step
return phi.eval(c)

Wewill shortly implement h(z) = 1
2 z

2 in the HalfSquared class, h(z) = ln(1+
exp(z)) in the Logistic class, and h(z) = max(0, z) in the Hinge class. With the
above we can now, for example, solve a linear least-squares problem using mini-
batches of training samples:

x = torch.zeros(dim)
optimizer = MiniBatchConvLinOptimizer(x, HalfSquared())
dataset = get_my_dataset()
for t, (A_batch, b_batch) in enumerate(DataLoader(dataset, batch_size=32)):

step_size = get_step_size(t)
optimizer.step(step_size, A_batch, b_batch)

print(’The model parameter vector is’, x)

The concrete implementation of various functions h can be found in Appendix B.
We note that the dual problem for h(z) = 1

2 z
2 can be computed analytically, but for

the hinge and logistic functions it cannot, and therefore we employ CVXPY [1, 18],
which in fact is an interface to a variety of lower-level convex optimization solvers.
Since the dual problem’s dimension is proportional to the mini-batch size, which is
typically quite small, solving it should still be moderately fast. This is, again, the case
when a combined C/Python implementation could be more efficient than pure Python
code, since we could use C to implement a dedicated efficient convex solver for the
dual problem of each loss.

4.3 Empirical evaluation

In contrast to the previous problem families, this time our proximal-point solver can
handle mini-batches of data. Thus, when comparing execution speed, we compare
the same mini-batch size for both our method and the incremental gradient method.
Figure5 contains the plots for various mini-batch sizes and two problem types - lin-
ear least-squares and logistic regression. We see that for least-squares problems, the
mini-batched proximal point method is on par with the incremental gradient method.
However, logistic regression problems employ the Logistic class which incurs
the overhead of the CVXPY framework, and is approximately 15 times slower for
mini-batches of 32 samples, and approximately 100 times slower for a mini-batch of
8 samples. The overhead of CVXPY is apparent, however, it isn’t our aim to design
and develop dedicated solvers for high-dimensional convex optimization problems.
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Fig. 5 Execution speed evaluation of mini-batch incremental proximal point. Each point is a timing of a
pair of experiments on the same problem, where the x coordinate is the execution time of one SGD epoch,
whereas the y coordinate is the execution time of one mini-batch proximal point epoch. Points differ in
running times due to generated data-set size. The columns are various problem dimensions, and the rows
are various mini-batch sizes for the incremental gradient method. The corresponding line is a least-squares
regression line, whose slope allows to appreciate the ratio between the SGD and proximal point running
times. For least-squares problems, the mini-batched proximal point method is on par with the incremental
gradient method. However, logistic regression problems employ the Logistic class which incurs the
overhead of the CVXPY framework and of a generic conic solver, and is approximately 15 times slower
for mini-batches of 32 samples, and approximately 100 times slower for a mini-batch of 8 samples, where
CVXPY’s overhead is more significant
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Fig. 6 Results of solving logistic regression and linear least-squares problems using an incremental gradient
method and our proximal-point with mini-batches implementation

However, we encourage our readers to do so, or find a faster third-party solver, if they
desire a production-grade optimizer for their model.

And again, to see that we indeed harvest the fruits of a proximal-point algorithm, we
conduct a stability experiment, where we solve logistic regression and least-squares
problems, and expect to see the resulting algorithm being much more stable, with
respect to the step-size choice, than an incremental gradient method. The results are
plotted in Fig. 6, where the stability is apparent - we indeed obtain a low training loss
value for a large range of step-sizes, in contrast to the incremental gradient method,
where we need to “pinpoint” the correct step-size to obtain good performance.

4.4 Summary

Duality played a central role here as well, but instead of reducing the proximal oper-
ator problem to a one-dimensional problem, we reduced the proximal operator to a,
hopefully, low dimensional problem whose dimension is the size of the mini-batch. In
practice, mini-batches typically have less than 128 samples, and thus our dual prob-
lems are of very low dimensions and can be solved extremely quickly. There is, of
course, an additional overhead incurred by using a commodity optimization package
such as CVXPY, and a dedicated solver for each dual problem could be substantially
faster. However, writing robust and efficient convex optimziation solvers is out of the
scope of this paper.
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A Code for regularized convex onto linear compositions

A.1 The HalfSquared class

For h(z) = 1
2 z

2, looking at the Table 1, we see that h∗(s) = 1
2 s

2 with dom(h∗) =
R, i.e. its conjugate is itself. Since the domain is non-compact and open, and h∗
is strictly convex, we perfectly fit the non-compact case. We will use the sequence
−1,−2,−22,−23, . . . for the lower bounds, and 1, 2, 22, 23, . . . for upper bounds.
The implementation is below:

from itertools import count

class HalfSquared:
def eval(self, z):

return (z ** 2) / 2

def conjugate_has_compact_domain(self):
return False

def lower_bound_sequence(self):
return (-(2 ** j) for j in count())

def upper_bound_sequence(self):
return ((2 ** j) for j in count())

def conjugate(self, s):
return (s ** 2) / 2

def conjugate_prime(self, s):
return s

A.2 The Logistic class

For h(z) = ln(1 + exp(z)), looking at Table 1, we see that h∗(s) = s ln(s) + (1 −
s) ln(1 − s) with the convention that 0 ln(0) = 0, and that the domain of h∗ is the
compact interval [0, 1]. Based on the above, we implement the Logistic class
below:

import math

class Logistic:
def eval(self, z):

return math.log1p(math.exp(z))

def conjugate_has_compact_domain(self):
return True

def domain(self):
return (0, 1)

def conjugate(self, s):
def entr(u):

if u == 0:
return 0

else:
return u * math.log(u)

return entr(s) + entr(1 - s)
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Note that since we’re not going to be searching for an initial interval, we don’t need
to implement the methods returning upper bound and lower bound sequences.

A.3 The Hinge class

For h(z) = max(0, z), looking at Table 1, we see that h∗(s) is just the indicator
of the interval [0, 1], and we again fall into the compact domain case. Below is the
implementation:

import math

class Hinge:
def eval(self, z):

return max(0, z)

def conjugate_has_compact_domain(self):
return True

def domain(self):
return (0, 1)

def conjugate(self, s):
if s < 0 or s > 1:

return math.inf
else:

return 0

A.4 The L2Reg class

First, note that for all regularizers we need to be able to compute theirMoreau envelope
and their proximal operator. Hence, we first define a common base class:

from abc import ABC, abstractmethod

class Regularizer(ABC):
@abstractmethod
def prox(self, eta, x):

pass

@abstractmethod
def eval(self, x):

pass

def envelope(self, eta, x):
prox = self.prox(eta, x)
result = self.eval(prox) + 0.5 * (prox - x).square().sum() / eta
return result.item()

Nowwe can use it to implement our L2Reg class, which represents r(x) = μ
2 ‖x‖22,

using the proximal operator in Table 2.

class L2Reg(Regularizer):
def __init__(self, mu):

self._mu = mu

def prox(self, eta, x):
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return x / (1 + self._mu * eta)

def eval(self, x):
return self._mu * x.square().sum() / 2.

A.5 The L1Reg class

Using the Regularizer base class above, and on Table 2, we can also implement
the L1Reg class for representing r(x) = μ‖x‖1.
from torch.nn.functional import softshrink

class L1Reg(Regularizer):
def __init__(self, mu):

self._mu = mu

def prox(self, eta, x):
softshrink(x, eta * self._mu)

def eval(self, x):
return self._mu * x.abs().sum()

A.6 The L2NormReg class

The following class represents the r(x) = μ‖x‖2 class.
from torch.linalg import norm

class L2NormReg(Regularizer):
def __init__(self, mu):

self._mu = mu

def prox(self, eta, x):
nrm = norm(x)
eta = eta * self._mu
return (1 - eta / max(eta, nrm)) * x

def eval(self, x):
return self._mu * norm(x)

B Code for mini-batch of convex onto linear compositions

B.1 The HalfSquared class

For h(z) = 1
2 z

2, we have h∗(s) = 1
2 s

2. Hence, our dual problem is of the form

q(s) = −1

2
‖Ps‖22 + cT s − m

2
‖s‖22

= −1

2
sT

(
PTP + mI

)
s + cT s,
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where I is the identity matrix of the appropriate size. It’s a simple strictly concave
quadratic function, which can be minimized by equating its gradient with zero:

∇q(s) = −(PTP + mI)s + c = 0.

Re-arranging the above equation leads to the maximizer

s = (PTP + mI)−1c.

It’s also easy to see thatPTP+mI is a symmetric positive-definitematrix, and thus s can
be obtained using the well-known Cholesky decomposition. Fortunately, PyTorch
has all the necessary machinery to do exactly that.

class HalfSquared:

def solve_dual(self, P, c):

m = P.shape[1] # number of columns = batch size

# construct lhs matrix P* P + m I
lhs_mat = torch.mm(P.t(), P)

lhs_mat.diagonal().add_(m)

# solve positive-definite linear system using Cholesky factorization
lhs_factor = torch.cholesky(lhs_mat)

rhs_col = c.unsqueeze(1) # make rhs a column vector, so that cholesky_solve works
return torch.cholesky_solve(rhs_col, lhs_factor)

def eval(self, lin):

return 0.5 * (lin ** 2)

B.2 The Logistic class

In direct contrast to the case of the half-squared function, for h(z) = ln(1 + exp(z))
with h∗(s) = s ln(s) + (1 − s) ln(1 − s) we don’t have a formula for computing a
maximizer s∗. However, convex optimization is a mature technology, and a variety
of extremely fast and efficient software packages exists to do exactly that - minimize
convex functions, or equivalently, maximize concave functions. In this paper we’ll
use one such package, CVXPY [1, 18], which in fact is an interface to a variety of
lower-level convex optimization solvers.

import torch
import cvxpy as cp

class Logistic:
def solve_dual(self, P, c):

# extract information and convert tensors to numpy. CVXPY
# works with numpy arrays
dtype = P.dtype
m = P.shape[1]
P = P.data.numpy()
c = c.data.numpy()

# define the dual optimization problem using CVXPY
s = cp.Variable(m)
objective = 0.5 * cp.sum_squares(P @ s) - \
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cp.sum(cp.multiply(c, s)) - \
(cp.sum(cp.entr(m * s)) + cp.sum(cp.entr(1 - m * s))) / m

prob = cp.Problem(cp.Minimize(objective))

# solve the problem, and extract the optimal solution
prob.solve()

# recover optimal solution, and ensure it’s cast to the same type as
# the input data.
return torch.tensor(s.value).to(dtype=dtype).unsqueeze(1)

def eval(self, lin):
return torch.log1p(torch.exp(lin))

B.3 The Hinge class

Aswas the case with the Logistic class, there is no closed-form solution for solving
the dual. The conjugate of h(z) = max(0, z) is the indicator of the interval [0, 1], and
thus the dual problem aims to solve

max
s

1

2
‖Ps‖22 + cT s s.t. 0 ≤ si ≤ 1

m

The corresponding Python code using CVXPY is below.

import torch
import torch.nn.functional
import cvxpy as cp

class Hinge:
def solve_dual(self, P, c):

# extract information and convert tensors to numpy. CVXPY
# works with numpy arrays
dtype = P.dtype
m = P.shape[1]
P = P.data.numpy()
c = c.data.numpy()

# define the dual optimization problem using CVXPY
s = cp.Variable(m)
objective = 0.5 * cp.sum_squares(P @ s) - cp.sum(cp.multiply(c , s))

constraints = [s >= 0, s <= 1. / m]
prob = cp.Problem(cp.Minimize(objective), constraints)

# solve the problem, and extract the optimal solution
prob.solve()
return torch.tensor(s.value).to(dtype=dtype).unsqueeze(1)

def eval(self, lin):
return torch.nn.functional.relu(lin)
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