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Abstract We devise an algorithm for finding the global optimal solution of the so-called
optimal power flow problem for a class of power networks with a tree topology, also called
radial networks, for which an efficient and reliable algorithm was not previously known.
The algorithm we present is called the tree reduction/expansion method, and is based on an
equivalence between the input network and a single-node network. Finally, our numerical
experiments demonstrate the reliability and robustness of our algorithm.

1 Introduction

Power systems are large networks which transport electrical power from generators to con-
sumers. The optimal power flow problem is a mathematical optimization problem concerned
with finding the state of the system that minimizes a certain objective, which might involve
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the total cost of generation, stability and reliability of the system, subject to the (noncon-
vex) constraints imposed by the laws of physics, and additional operational constraints. The
decision variables, constraints and objective involve physical quantities which arise in the
analysis of electrical circuits, such as voltage, current and power. Readers are referred to [11]
for a survey on formulations and properties of OPF problems.

The nonconvexity of the feasible set makes the problem computationally intractable in
general. In spite of this, the substantial economic and engineering importance of this problem
led to the development of various methods for globally solving special instances of the
problem, or even more common, to the derivation of approximation and heuristic techniques.
For a comprehensive review of these methods, the reader is referred to the extensive review
[1] as well as references therein.

In this paper, we concentrate on radial networks, which are networks with a tree topology.
Due to the nonconvexity of the constraints, even the problem of finding a feasible solution is
in general difficult task. However, specific families of radial networks enjoyed some success
in finding the global opimum in a computationally efficient manner, mostly via convex
relaxations.

The methods proposed in [10,12] utilize second order cone programming (SOCP) relax-
ations which yield a global optimum under the assumption that voltage magnitudes are
unbounded above or below, and the objective function is a convex quadratic function of
a specific form. The methods proposed in [2,15] utilize semidefinite programming (SDP)
relaxations, which yield a global optimum under the assumption that the power produced
by the generators is unbounded below, and the power delivered to consumers is unbounded
above, and assumptions on the objective function which are similar in nature to those made
for the SOCP-basedmethods. See [16,17] for a comprehensive tutorial on various relaxations
and the conditions that ensure global optimality.

Despite the success of convex relaxations, there aremanyOPF instances on radial networks
for which convex relaxations are incapable of producing the global optimum. For example,
in contrast to popular works on convex relaxations, the authors of [14] study the conditions
which ensure that SDP relaxations will not produce the global optimum, and create a library
of such problem instances. This prompts the need for different approaches, which compute
global optima for networks under assumptions which are not covered by convex relaxations.

Motivated by the above, in this paper we propose an algorithm which computes a global
optimum in a reliable, and computationally efficient manner for a family of radial networks
that radically differs from the families solved by convex relaxations. We assume the classical
partition of the nodes to PQ and PV nodes with an additional reference node. The objective
function is not assumed to have any specific structure.

The solution follows from an equivalence theorem between a radial network of a certain
family, and a smaller radial network. The OPF problem is solved by applying the theorem
repeatedly to reduce the input network, until an equivalent single-node terminal network
is obtained. The constraints of the terminal network have a simple characterization, which
is expanded, based on the same equivalence theorem, to form a computationally tractable
representation of the constraints of the input network. Hence, our algorithm is called the tree
reduction/expansion method.

Our algorithm bears similarity to an idea that was proposed in [3] to solve feasibility
problems on radial networks iteratively performing a pair of tree traversals (sweeps) which
propagate information: from the root to the leaves and from the leaves to the root. The ideawas
further developed into a family of algorithms known as forward-backward sweep methods.
Readers are refered to [5,6,13] for more examples and to [8] for an extensive survey. Despite
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the apparent resemblance, our method differs from the forward-backward sweep methods in
several key aspects.

First, the above-mentioned methods solve feasibility problems, while we solve an opti-
mization problem. In addition, these methods are iterative in nature, and perform several
sweeps of the network until convergence. Our method, on the other hand, is not iterative, and
it characterizes the entire feasible set of the given problem in a single sweep. Finally, to the
best of our knowledge, these iterative methods have no mathematically proven guarantee of
convergence to a feasible solution, despite empirical results which demonstrate their perfor-
mance on many examples. In contrast, our method is backed by a theorem that ensures, under
mild assumptions, that our method is correct up to user-controlled approximation error.

1.1 Paper layout

First, in Sect. 2 we explain in detail what are power systems and how they are mathematically
modeled. Section 3 defines the mathematical notation and formalism we use to compactly
describe power networks. Then, we define the OPF problem in terms of this notation, and
state the assumptions required for our algorithm. In Sect. 4 we state the main theorem of this
paper, called the “tree reduction theorem”, which establishes an equivalence between a given
network and a smaller network leading to the development of the tree reduction/expansion
method. Finally, Sect. 5 is devoted to the proof of the tree reduction theorem, and in Sect. 6
we present the results of several numerical experiments, which serve as an empirical evidence
for our claim of reliably computing the global optimum.

1.2 Mathematical notation

Italics, e.g. a, b, V, I , are used for scalars. Capital italics are also used to describe sets. Bold
letters, e.g. p,q,Y, are used for column vectors and matrices; Indexed italics, e.g. Yi j , are
used to denote scalars or matrix/vector elements. The sets of real and complex numbers are
denoted by R and C respectively and the set of natural numbers (excluding 0) is denoted
by N. The symbol i is the complex imaginary unit, e.g. i2 = −1. We use re(z), im(z) to
denote the real and imaginary parts of z ∈ C, and |z|, arg(z) to denote its absolute value and
angle (argument) in radians. For vectors andmatrices re(·), im(·), | · |, and arg(·) are naturally
extended to be component-wise operations. We also use e to denote the vector of ones, and
0 to denote the zeros vector.

We also define some notation related to an undirected graph G = (V, E) with V being the
node set and E being the edge set. The edge connecting nodes k and j (if exists) is denoted
by {k, j} ∈ E . In addition, for each k ∈ V we denote by Nk the set of the neighbors of k. That
is, Nk = { j ∈ V : {k, j} ∈ E}. A tree T = (V, E) is an undirected graph without cycles. If
the tree is rooted at some node, then parent-child relationships are automatically defined. We
denote by root(T ) the root node of T , by PaT ( j) the parent of node j ∈ V , by ChT ( j) the
set of (direct) children of node j ∈ V . We also denote by L(T ) the set of leaves of a rooted
tree T , which are nodes without children: L(T ) = {k ∈ V : ChT (k) = ∅}. Note that the root
of the tree may be a leaf in the graph-theoretic sense, but is usually not a leaf in the rooted
tree sense. Specifically, root(T ) ∈ L(T ) if and only if root(T ) is the only node of T .

Finally, we define some notation related to functions. For a function f : S → D, we
denote its domain by dom( f ) := S and its image by

image( f ) ≡ { f (x) : x ∈ dom( f )}.
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For a set of functions f1, . . . , fm we extend the operator image(·) as follows:

image( f1, . . . , fm) ≡ {( f1(x), . . . , fm(x)) : x ∈ dom( f1) ∩ . . . ∩ dom( fm)}.

Any function f which maps scalars to scalars is extended to operate on vectors in a
component-wise manner. That is, given a vector p ∈ R

n the expression f (p) is a vector
in R

n such that ( f (p))i = f (pi ). The scalar fraction operator is also extended in a similar
manner, and for two vectors p,q ∈ R

n the expression p
q is a vector of component-wise

fractions. That is, ( pq )i = pi
qi
. The power, absolute value, and complex conjugate operations

are extended in a similar manner.

2 Power system modeling

An electric power system is a physically large electric circuit consisting of sources of energy
and consumers of energy (generators and loads) that are interconnected through transmission
and distribution networks. One can think of such a system as a graph G = (V, E) consisting
of nodes and edges. The nodes refer to the network’s buses, and represent points of equal
voltage. Edges represent the network transmission lines. Each generator or load in the system
is connected to a specific node.We refer toG as the network topology graph. Unless the nodes
of a power network’s topology graph G are defined otherwise, we use the convention that
V = {1, 2, . . . , n} for some positive integer n.

The voltages and currents in the system are typically sinusoidal (AC) signals with fre-
quency of nearly 50 or 60 Hz. The magnitude and phase of these sinusoidal signals are
represented by complex numbers called phasors. In this paper, vk ∈ C is the voltage phasor
at node k, and Ik ∈ C is a phasor describing the current injected into node k. Additional
quantities associated with each node k are its active power pk ∈ R and reactive power
qk ∈ R. These are combined to form the apparent power sk = pk + iqk ∈ C. Associated
with each edge {k, j} ∈ E is the impedance zk j , which is a complex number that measures
the conductivity of the power transmission line. Figure 1 illustrates a simple power network
and its corresponding graph.

Balanced three-phase networks are characterized by a matrix Y, named the nodal admit-
tance matrix. This matrix expresses the relationships between node voltages and currents via
the following set of equations:

Fig. 1 a Electric circuit representing one phase in a balanced three-phase power system. Loads are connected
to nodes 1, 3, and a synchronous generator is connected to node 2. b An equivalent graph, showing nodes,
edges, and injected powers
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Ik =
n∑

j=1

Yk, jv j , k = 1, . . . , n (1)

Taking the conjugate of both sides of (1), multiplying both sides by vk , and using the power
formula sk = vk I ∗

k results in:

sk = pk + iqk =
n∑

j=1

vkv
∗
j Y

∗
k, j , k = 1, 2, . . . , n. (2)

These equalities are known as the power flow equations (PFE). In case the system is rep-
resented by per-unit quantities, such that all transformers have a ratio of 1:1, and all shunt
elements are modeled as part of generators or loads, the admittance matrix is given by

Yk, j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− 1

zk j
, {k, j} ∈ E,

∑

�:{k,�}∈E

1

zk�
, k = j,

0, otherwise.

(3)

An impedance function Z : E → C is a function that assigns an impedance to each edge. For
consistency and readability, we use the indexed notation zk j to denote Z({k, j}). The power
flow equations defined in (2) are a key physical property of any power transmission system,
and therefore for any graph G with n nodes and a corresponding impedance function Z we
define the set PFE(G, Z) to be the set of voltages and powers associated with all nodes which
satisfy the power-flow equations. Formally,

PFE(G, Z) ≡
⎧
⎨

⎩(v, s) ∈ C
n × C

n : sk =
n∑

j=1

vkv
∗
j Y

∗
k, j , k = 1, 2, . . . , n

⎫
⎬

⎭ ,

where Yk, j are defined in (3). The quadratic transformation that maps the voltages v to the
powers s is denoted by QZ :

QZ (v) ≡
⎛

⎝
n∑

j=1

vkv
∗
j Y

∗
k, j

⎞

⎠
n

k=1

.

In this notation, we can rewrite the set PFE(G, Z) as

PFE(G, Z) = {(v, s) ∈ C
n × C

n : s = QZ (v)
}
.

3 Terminology and problem statement

In this paper we present an algorithm for finding a global optimal solution of a special,
yet challenging, case of the optimal power flow problem. In this section we describe the
basic formalism used in the paper, define the optimal power flow problem in terms of this
formalism, and finally, present the class of restricted radial networks for which the optimal
power flow problem will be shown to be tractable under some verifiable conditions.
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3.1 Power networks

We now define the concept of a power network that is described by the topology graph of
a power transmission system, as well as additional constraint sets corresponding to each of
the nodes.

Definition 1 (power network) The tuple P = (G, Z , {Ck}k∈V ) is called a power network
if:

• G = (V, E) is an undirected graph with V ⊆ N and 1 ∈ V;
• Z : E → C is the impedance function of G;
• For any k ∈ V we have Ck ⊆ R × C. Each set Ck is called the constraint set associated

with node k.

We use the sets {Ck}k∈V of a power network to constrain the network’s capacity to produce
and consume power by constraining the voltage absolute value and the power injected into
each node. In addition, we designate node “1” as the reference node, for which the voltage
angle is zero. We are now ready to define formally the notions of feasible pairs and feasible
vectors of a power network. Note that since the powers and voltages satisfy the relation
s = QZ (v), feasibility can also be defined solely with respect to the voltages vector.

Definition 2 (feasible pairs and vectors) Let P = (G, Z , {Ck}k∈V ) be a power network with
V = {1, 2, . . . , n}.
• A pair of vectors (v, s) ∈ C

n × C
n is called a feasible pair of the network P if

arg(v1) = 0,

(v, s) ∈ PFE(G, Z),

(|vk |, sk) ∈ Ck, k ∈ V.

• A vector v ∈ C
n is called a feasible vector of the network P if

arg(v1) = 0,

(|vk |, (QZ (v))k) ∈ Ck, k ∈ V.

• The set of all feasible pairs of the networkP is denoted byFvs(P), and formally defined
by

Fvs(P) ≡ {(v, s) ∈ C
n × C

n : arg(v1) = 0, (v, s) ∈ PFE(G, Z),

(|vk |, sk) ∈ Ck, k ∈ V}.
• The set of all feasible vectors of the network P is denoted by Fv(P), and formally

defined by

Fv(P) ≡ {v ∈ C
n : arg(v1) = 0, (|vk |, (QZ (v))k) ∈ Ck, k ∈ V}.

Obviously v is a feasible vector of P if and only if (v,QZ (v)) is a feasible pair and the two
feasible sets Fv(P) and Fvs(P) are connected by the relation

Fv(P) = {v ∈ C
n : (v,QZ (v)) ∈ Fvs(P)}.
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When we list the sets Ck directly inside the tuple describing the power network, we
implicitly assume that their indices are the vertices of the topology graph. For example,
when we denote a power network by (G, Z , C1, . . . , Cn), it is assumed that the set of vertices
of G is {1, . . . , n}.

The following node constraint types are widely used in power-flow problems:

PQ constraint If
Ck = [Vmin

k , Vmax
k ] × {ŝk},

where ŝk ∈ C, Vmin
k ∈ R+, and Vmax

k ∈ R++ ∪ {+∞} are given con-
stants, then Ck is called a PQ constraint. That is, with PQ constraints
we exactly specify the apparent power, while constraining the voltage
absolute value to lie in a given interval, which may be unbounded.

PV constraint If

Ck = {v̂k} × {s ∈ C : re(s) = p̂k, im(s) ∈ [Qmin
k , Qmax

k ]},

where v̂k ∈ R++, p̂k ∈ R, Qmin
k ∈ R ∪ {−∞}, and Qmax

k ∈ R ∪
{+∞} are given constants, then Ck is called a PV constraint. That is, with
PV constraints we exactly specify the voltage absolute value and active
power, while constraining the reactive power to lie in a given interval,
which may be unbounded.

3.2 The power flow problem

In the power-flow problem on a power network P , the goal is to either find (v, s) ∈ Fvs(P)

or deduce that Fvs(P) = ∅. In most cases, the sets Ck are chosen such that all the equality
constraints defining Fvs(P) comprise 4n equations in 4n variables (n being the number of
nodes). One particular widely used choice is:

• For any k ∈ V, k �= 1, the set Ck is either a PV or a PQ constraint.
• The set C1 is defined by

C1 = {v̂1} × {s ∈ C : re(s) ∈ [Pmin
1 , Pmax

1 ], im(s) ∈ [Qmin
1 , Qmax

1 ]}.

In other words, the voltage absolute value is exactly specified, while the active and
reactive powers are constrained to an interval.

3.3 The optimal power flow problem

The purpose of the optimal power flow problem on a power network P = (G, Z , C1, . . . , Cn)
is to minimize a certain objective function of (v, s) ∈ C

n × C
n , subject to the physical

constraints of the system, described byFvs(P) and some additional constraints. The objective
function might, for example, include elements related to the actual cost of energy production,
stability and reliability. In most cases of interest, the equality constraints define less than 4n
equations, to leave some degrees of freedom. Formally, the optimal power-flow problem is
described below.
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The Optimal Power Flow Problem
Problem data:

• a power network P = (G, Z , C1, . . . , Cn);
• the objective function f : Cn ×C

n → R that assigns a cost f (v, s) to each instance
of the voltage and power vectors v, s;

• a set of additional constraints C ⊆ C
n × C

n .

Objective: find an optimal solution, if one exists, of the following optimization problem:

min
v,s∈Cn

f (v, s) (OPF)

s.t. (v, s) ∈ Fvs(P),

(v, s) ∈ C.

3.4 Restricted radial networks

The OPF problem is a difficult nonconvex problem since, for example, it includes quadratic
equality constraints. Thus, it seems to be an intractable problem in general. In this paper we
will show how to solve the problem for a class of power networks with a tree topology which
we call restricted radial networks.

Definition 3 A power network P = (T, Z , {Ck}k∈V ) is called a restricted radial network
if the following conditions hold:

• T = (V, E) is a rooted tree with root(T ) = 1 and |T | ≥ 2;
• for any k ∈ V \ L(T ), k �= 1 the set Ck is a PQ constraint;
• for any k ∈ L(T ) the set Ck is either a PQ or a PV constraint. The corresponding interval,

[Vmin
k , Vmax

k ] for a PQ constraint or [Qmin
k , Qmax

k ] for a PV constraint, is bounded;
• the root constraint set is C1 = [Vmin

1 , Vmax
1 ] × C, where Vmin

1 ∈ R+ and Vmax
1 ∈

R++ ∪ {+∞} are given constants. That is, the root voltage is constrained to lie in a
(possibly unbounded) interval, while the root injected power is unconstrained.

The network in Fig. 2 is an example of a restricted radial network. The goal of this
paper is to describe an efficient algorithm for solving the OPF problem on restricted radial
networks. The restriction that PV constrained nodes cannot be non-leaves was introducted
to simplify the presentation of our algorithm as a concept, and indeed in Sect. 4.8 show how
this restriction can be eliminated.

4 The tree reduction/expansion method

In contrast to popular methods, our algorithm for solving the OPF problem on a restricted
radial network P does not, by nature, generate a recurrent sequence which converges to
the optimal solution. Instead, our algorithm is based on a technique that essentially fully
characterizes the feasible set Fv(P) (or Fvs(P)) and then picks out of this set a vector
(or vectors) corresponding to the minimal objective function value which also satisfies the
additional constraints described in C.

The method comprises two stages. The aim of the first stage is to find a representation
of Fv(P) that will enable us to evaluate all the points in Fv(P) up to some discretization.
This is done by a sequence of reductions of the power network up to the point that we
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1 2

3

z23 = 0.02 + 0.01i

4
z24

= 0.04 + 0.06i

z12 = 0.02 + 0.005i

C1 = [0.97,∞] × C

Root constraint: V min
1 = 0.97, V max

1 = ∞
C2 = [0.9, 1.1] × {−0.2 − 0.1i}

PQ constraint: V min
2 = 0.9, V max

2 = 1.1, ŝ2 = −0.2 − 0.1i

C3 = [0.9, 1.1] × {−0.4 − 0.3i}
PQ constraint: V min

3 = 0.9, V max
3 = 1.1, ŝ2 = −0.4 − 0.3i

C4 = {1} × {s ∈ C : re(s) = 0.25, im(s) ∈ [−1, 1]}
PV constraint: v̂4 = 1, p̂ = 0.25, Qmin

4 = −1, Qmax
4 = 1

Fig. 2 Example of a restricted radial network

reach an elementary network with a single node. This sequence of reductions is done by the
tree reduction method. In the second stage, we use the outcomes of the first stage in order
to find all points in Fv(P) up to some discretization, using a method that we call the tree
expansion method, and pick the optimal solution out of these points. The combination of the
two methods is the tree reduction/expansion method.

This section is devoted to the derivation of the tree reduction/expansion method and
its practical implementation. We derive our method under a technical assumption on the
network, which somewhat limits the applicability of our algorithm. Then, we show how this
assumption can be substantially weakened, making our algorithm applicable to almost any
restricted radial network.

4.1 Tree reductions

We begin with the definition of a tree reduction, illustrated in Fig. 3.

Definition 4 (Tree reduction)

1. A node j ∈ V in a rooted tree T = (V, E) is reducible if ChT ( j) ⊆ L(T ), and
ChT ( j) �= ∅. That is, j’s children form a non-empty set of leaves.

2. A rooted tree T is a reduction of a rooted tree S via the node j, if j is reducible in S
and T was constructed by removingChS( j) and all their associated edges from S. A tree
T is a reduction of S if it is a reduction of S via some reducible node of S.

3. A tree T is an indirect reduction of a rooted tree S, if there exists a sequence of
rooted trees S = T1, T2, . . . , Tm = T such that Tk+1 is a reduction of Tk for any
k = 1, 2, . . . ,m − 1.
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A

B C

E F

D

G H

A

B C

E F

D

G H

A

B C

E F

D

G H

A

B C

E F

D

G H

T1 T2 T3 T4

Fig. 3 A sequence of reductions. Grayed nodes and edges were discarded by the reductions. T1 consists of
the nodes {A, B,C, D, E, F,G, H} and rooted at A. T2 is a reduction of T1 via C . T3 is a reduction of T2 via
D. Finally, T4 is a reduction of T3 via A. Also, for any k < j the tree Tj is an indirect reduction of Tk

4.2 Curved radial networks

Another step that is required to derive the tree reduction method is to define a slight gener-
alization of restricted radial networks.

Definition 5 (Curved Radial Network) A power network P = (T, Z , {Ck}k∈V ) is a curved
radial network (or a CRN) if the following conditions hold:

• T = (V, E) is a rooted tree with root(T ) = 1.
• For any k �= 1, k /∈ L(T ) the set Ck is a PQ constraint.
• For any k ∈ L(T ) we have

Ck = image(νk, σk),

where νk : [0, 1] → R++ and σk : [0, 1] → C are given continuous functions. That is,
for any leaf k, the set Ck is a continuous one-dimensional curve in R × C.

• If 1 /∈ L(T ), the root constraint is C1 = [Vmin
1 , Vmax

1 ] × C, where Vmin
1 ∈ R+ and

Vmax
1 ∈ R++ ∪ {+∞} are given constants. That is, the root voltage is constrained to lie

in a (possibly unbounded) interval.

To see why a CRN is indeed a generalization of a restricted radial network, we point out
two observations. First, in a CRN we allow |T | = 1, while in a restricted radial network
we require |T | ≥ 2. Second, when |T | ≥ 2, the only difference between the two network
types is in the definition of Ck for k ∈ L(T ) as one-dimensional curves. However, these sets
in a restricted radial network are essentially one-dimensional line segments, and thus can
be represented as one-dimensional curves. Indeed, if (T, Z , {Ck}k∈V ) is a restricted radial
network, then for any k ∈ L(T ), we can represent the constraint set Ck as Ck = image(νk, σk)
with the following functions for PQ constraints (recalling that Vmin

k , Vmax
k are finite real

numbers):
νk(t) = (1 − t)Vmin

k + tV max
k , σk(t) = ŝk,

and the following functions for PV constraints (recalling that Qmin
k , Qmax

k are finite real
numbers):

νk(t) = v̂k, σk(t) = p̂k + i
[
(1 − t)Qmin

k + t Qmax
k

]
.

For example, applying the transformation described above to the network in Fig. 2 results in
the CRN illustrated in Fig. 4.
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1 2

3

z23 = 0.02 + 0.01i

4
z24

= 0.04 + 0.06i

z12 = 0.02 + 0.005i

C1 = [0.97, ∞] × C

C2 = [0.9, 1.1] × {−0.2 − 0.1i}
C3 = image(ν3, σ3) ν3(t) = 0.9 + 0.2t, σ3(t) = −0.4 − 0.3i

C4 = image(ν4, σ4) ν4(t) = 1, σ4(t) = 0.25 + i · [−1 + 2t]

Fig. 4 A CRN equivalent to the network in Fig. 2

4.3 The tree reduction theorem

The next theorem is the main result in the paper and constitutes the theoretical justification
for the tree reduction/expansionmethod. The result establishes a relationship between a CRN
with some topology tree T , and a smaller CRN whose topology graph is a reduction of T .
For readability reasons, its proof is provided in a separate section later in this paper (Sect. 5).

Theorem 1 (the tree reduction theorem) Let P = (T, Z , C1, . . . , Cn) be a CRN with n ≥ 2.
Let j be a reducible node in T , and assume w.l.o.g. that ChT ( j) = { j + 1, . . . , n}. Let:
• T ′ be the reduction of T via j;
• {νk, σk}nk= j+1 be the functions describing the curves Ck , k = j + 1, . . . , n;

• Vmin
j , Vmax

j , ŝ j be the scalars for which C j = [Vmin
j , Vmax

j ] × {ŝ j }.
Define the functions ν̃k : [0, 1] → R+ and σ̃k : [0, 1] → C, and the set U j by:

ν̃k(t) =
∣∣∣∣νk(t) − (σk(t))∗zk j

νk(t)

∣∣∣∣ , k = j + 1, . . . , n, (4)

σ̃k(t) = σk(t) − zk j
|σk(t)|2
(νk(t))2

, k = j + 1, . . . , n, (5)

Uj = [Vmin
j , Vmax

j ] ∩
⎛

⎝
n⋂

k= j+1

image(ν̃k)

⎞

⎠ . (6)

Assume that the functions ν̃k are invertible, and let

φk ≡ σ̃k ◦ ν̃−1
k . (7)

If U j = ∅, then Fv(P) = ∅. Otherwise, set [νmin
j , νmax

j ] = Uj and we have that v ∈ Fv(P)

if and only if all of the following hold:

1. v′ = (v1, . . . , v j )
T ∈ Fv(P ′), where P ′ = (T ′, Z ′, C1, . . . , C j−1, C′

j ) is a CRN in which
T ′ is a reduction of T via j , Z ′ is the restriction of the function Z on the edge set of T ′
and the curve C′

j is defined by the following pair of functions:

ν j (t) = (1 − t) · νmin
j + t · νmax

j , (8)
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σ j (t) =
{
ŝ j +∑n

k= j+1(φk ◦ ν j )(t), j �= 1,

0, j = 1; (9)

2. for any k = j + 1, . . . , n we have

vk = v j + zk j

(
φk(|v j |)

v j

)∗
. (10)

The tree reduction theorem essentially states that the problem of finding the feasible
vectors of a given CRN P = (T, Z , C1, . . . , Cn) can be reduced into the problem of finding
the feasible vectors of a smaller CRN P ′ = (T ′, Z ′, C1, . . . , C j−1, C′

j ). Assuming that we
found the set of feasible vectors of P ′, we can find the voltages of the larger CRN by using
the functions φk given in (7). These functions are called the voltage transfer functions since
they allow us, using Eq. (10), to map the voltage of the node through which the reduction
was performed to the voltages of its children nodes.

4.3.1 Example

We illustrate the reduction described in Theorem 1 on the CRNdescribed in Fig. 4.We choose
the reducible node j = 2, for which we have ChT (2) = {3, 4}. We begin by computing the
functions ν̃3, σ̃3, ν̃4, σ̃4, verify that ν̃3 and ν̃4 are invertible, and then proceed to compute the
set U2. The formulas in (4) and (5) with j = 2 and k = 3 yield:

ν̃3(t) =
∣∣∣∣ν3(t) − (σ3(t))∗z23

ν3(t)

∣∣∣∣ =
∣∣∣∣0.9 + 0.2t − (−0.4 + 0.3i)(0.02 + 0.01i)

0.9 + 0.2t

∣∣∣∣

=
√

0.000125

(0.2t + 0.9)2
+ (0.2t + 0.9)2 + 0.022,

σ̃3(t) = σ3(t) − z23
|σ3(t)|2
(ν3(t))2

= −0.4 − 0.3i − (0.02 + 0.01i)
0.25

(0.9 + 0.2t)2

=
[
− 0.005

(0.2t + 0.9)2
− 0.4

]
+ i ×

[
− 0.0025

(0.2t + 0.9)2
− 0.3

]
.

(11)

Similarly, computing ν̃4 and σ̃4 yields:

ν̃4(t) =
√
0.0208t2 − 0.2608t + 1.105525,

σ̃4(t) = (−0.16t2 + 0.16t + 0.2075) + i · (−0.24t2 + 2.24t − 1.06375).

It is easy to show that ν̃3 and ν̃4 are monotone; this can also be illustrated graphically:

ν̃3(t) ν̃4(t)

0 1
0.9

1.15

0 1

123



J Glob Optim

Since ν̃3 is increasing and ν̃4 is decreasing, we have

image(ν̃3) = [ν̃3(0), ν̃3(1)] = [0.9122, 1.1100],
image(ν̃4) = [ν̃4(1), ν̃4(0)] = [0.9303, 1.0514].

Using Eq. (6) we compute:

U2 = [0.9, 1.1] ∩ [0.9122, 1.1100] ∩ [0.9303, 1.0514] = [0.9303, 1.0514]. (12)

The assumptions of the tree reduction theorem indeed hold (invertibility of ν̃3 and ν̃4),
and therefore (v1, v2, v3, v4)

T ∈ Fv(P) if and only if:

1. (v1, v2)
T ∈ Fv(P ′), where P ′ = (T ′, Z , C1, C′

2), T
′ is the reduction of T via node j = 2,

and C′
2 = image(ν2, σ2) with ν2, σ2 defined by

ν2(t) = νmin
2 · (1 − t) + νmax

2 · t = 0.9303 · (1 − t) + 1.0514 · t
σ2(t) = ŝ2 + φ3(ν2(t)) + φ4(ν2(t)),

where φ3 = σ̃3 ◦ ν̃−1
3 and φ4 = σ̃4 ◦ ν̃−1

4 .
2. We have

v3 = v2 + z23

(
φ3(|v2|)

v2

)∗
,

v4 = v2 + z24

(
φ4(|v2|)

v2

)∗
.

Next, we need to compute φ3 and φ4, which participate in the conclusion above. Let

v ∈ R+; we will compute φ3(v) =
(
σ̃3 ◦ ν̃−1

3

)
(v). Denoting t = ν̃3

−1(v), we have that

ν̃3(t) = v, meaning that:

√
0.000125

(0.2t + 0.9)2
+ (0.2t + 0.9)2 + 0.022 = v,

which readily implies that

(0.9 + 0.2t)2 = v2 − 0.022 + √
v4 − 0.044v2 − 0.000016

2
.

Therefore, taking into account the expression for σ̃3 given in (11),

φ3(v) = σ̃3(t) =
[
−0.4 − 0.1

v2 − 0.022 + √
v4 − 0.044v2 − 0.000016

]

+ i

[
−0.3 − 0.05

v2 − 0.022 + √
v4 − 0.044v2 − 0.000016

]

In a similar manner, φ4 is computed from ν̃4 and σ̃4:

φ4(v) = 0.017751
√
520000.0v2 − 149777.0 − 7.6923v2 − 2.8624

+ i × (0.0073964
√
520000.0v2 − 149777.0 − 11.538v2 + 6.8698).
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1 2

3
z23 = 0.02 + 0.01i

4
z24

= 0.04 + 0.06i

z12 = 0.02 + 0.005i

re(φ3(t)) im(φ3(t))
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ν2(t) re(σ2(t)) im(σ2(t))
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-0.35

10
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1

Fig. 5 The network P ′ = (T ′, Z ,C1,C′
2), where T

′ are the black nodes and edges. The gray nodes and edges
that were discarded by the reduction

To summarize, having expressed the functions φ3, φ4, ν2, σ2, and remembering that P ′ =
(T, Z , C1, C′

2) with C′
2 = image(ν2, σ2), we have the following mathematical relationship:

(v1, v2, v3, v4)
T ∈ Fv(P)

⇐⇒
(v1, v2)

T ∈ Fv(P
′),

v3 = v2 + z23

(
φ3(|v2|)

v2

)∗
,

v4 = v2 + z24

(
φ4(|v2|)

v2

)∗
.

(13)

The formulas for v3 and v4 above follow from (10) for j = 2 and k = 3, 4. All the functions
involved are graphically illustrated in Fig. 5.

4.4 The tree reduction method

The idea in the tree reduction method is to successively employ the reductions described
in the tree reduction theorem (Theorem 1) in order to get a sequence of CRNs P(0) ≡
P, P(1), . . . , P(m) until we reach the CRN P(m) consisting only of the single node 1. During
this process, we compute the voltage transfer functions {φk}nk=2 and the interval [νmin

1 , νmax
1 ]

of possible values of the voltage at node 1 (recall that we assume that v1 is real). In addition,
we test for the nonemptiness of Fv(P) by observing that Fv(P) �= ∅ if and only if all of
the setsUj computed during this phase are nonempty. The set of feasible vectors of the final
CRN P(m) (consisting of the single node 1) is extremely simple and is given by

Fv(P
(m)) =

[
νmin
1 , νmax

1

]
.

The tree reduction method is formally summarized in Algorithm 1 below. We assume that
wehave a procedure namedCompute- Reduction- Order,which computes the sequence of
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nodes u1, . . . , uw , with uw = 1, via which the reductions of the original tree are performed.
Such a procedure can be easily implemented, for instance, by employing a Breadth-First
Search algorithm.

Algorithm 1 The Tree Reduction Method
Input: A CRN P = (T, Z ,C1, . . . ,Cn)

Output: the reduction order (u1, . . . , uw = 1); the functions {φk }nk=2; the interval [νmin
1 , νmax

1 ] of feasible
values of v1.
Steps:
1: u1, . . . , uw = 1 ← Compute- Reduction- Order(T )
2: for all j ∈ {u1, . . . , uw} do � Invariant: νk , σk exist for k ∈ ChT ( j)
3: for all k ∈ ChT ( j) do

4: Compute ν̃k as: ν̃k (t) ≡
∣∣∣νk (t) − zk j

(σk (t))
∗

νk (t)

∣∣∣ � Eq (4)

5: Compute σ̃k as: σ̃k (t) ≡ σk (t) − zk j
|σk (t)|2
(νk (t))2

� Eq (5)

6: Compute φk as: φk ≡ σ̃k ◦ ν̃−1
k

7: end for
8: Uj ← [Vmin

j , Vmax
j ] ∩

(⋂
k∈ChT ( j) image(ν̃k )

)
� Eq (6)

9: if Uj = ∅ then
10: Terminate with an error: Fv(P) = ∅
11: else
12: [νmin

j , νmax
j ] ← Uj

13: end if
14: if j �= 1 then
15: Compute ν j as: ν j (t) ≡ νmin

j · (1 − t) + νmax
j · t � Eq (8)

16: Compute σ j as: σ j (t) ≡ ŝ j +∑k∈ChT ( j) φk (ν j (t)) � Eq (9)
17: end if
18: end for

Note that the tree reduction method, as described above, is conceptual in nature, since it
assumes that we have an efficient way to compute and represent the functions σk, νk and φk .
Section 4.7 will describe an implementable version of the method.

We can now formally state the technical assumption which must hold for a CRN P , and
is essential for the correctness of the tree reduction method applied on P .

Assumption (Invertibility assumption) During the execution of the tree reduction method
on the network P , the functions ν̃k computed on line 4 are invertible.

It does not seem to be possible to verify the validity of the invertibility assumption on a given
CRN P a priori using only the data of the problem. However, this condition can be verified
during the execution of the tree reduction method. Our numerical simulations suggest that
when the impedances are small enough, the assumption holds. In any case, in Sect. 4.9 we
describe a way to eliminate the above assumption.

4.4.1 Example continued

The example from Sect. 4.3.1 described the first reduction used in the tree reduction method
in which the CRN P with the four nodes {1, 2, 3, 4} was reduced into the CRN P ′ with the
two nodes {1, 2}. The tree reduction method will conduct at this point a second reduction—a
reduction of the CRN P ′ = (T ′, Z ′, C1, C′

2) via the node 1, which is reducible in T
′. We have

ChT ′(1) = {2}. Skipping the tedious computations, the process of computing the functions
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re(φ2 (mi) φ2)
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Fig. 6 Real and imaginary parts of φ2

Algorithm 2 The Tree Expansion Method
Input: a CRN P = (T, Z ,C1, . . . ,Cn); two of the outputs of the tree reduction method – the reduction order
(u1, . . . , uw = 1), the voltage transfer functions {φk }nk=2; a scalar α ∈ R+
Output: a vector (v, s) ∈ Fvs (P) for which v1 = α.
Steps:
1: v1 ← α

2: for all j ∈ uw, . . . , u1 do � Invariant: v j was already computed
3: for all k ∈ ChT ( j) do

4: vk ← v j + zk j
(

φk (|v j |)
v j

)∗ � Eq. (10)

5: end for
6: end for
7: s ← QZ (v)
8: Return: (v, s)

ν̃2 and σ̃2 and the nonempty set U1, verifying the invertibility of ν̃2 by observing that it is
strictly increasing, computing the endpoints of the non-empty interval U1 = [νmin

1 , νmax
1 ],

and finally utilizing Eqs. (8) and (9) yields:

[νmin
1 , νmax

1 ] = [0.97,∞] ∩ [ν̃2(0), ν̃2(1)] = [0.97, 1.0663].

In addition, computing φ2 = σ̃2 ◦ ν̃−1
2 results in the function described in Fig. 6. By defining

P ′′ = (T ′′, Z ′′, C′
1) with C′

1 = [νmin
1 , νmax

1 ] × {0}, we can replace the statement (v1, v2) ∈
Fv(P ′) in Eq. (13) with equivalent statements which follow from the CRN reduction theorem
applied to P ′ with j = 1. The conclusion is that (v1, v2, v3, v4)T ∈ Fv(P) if and only if

v1 ∈ Fv(P
′′) = [νmin

1 , νmax
1 ], (14)

v2 = v1 + z12

(
φ2(|v1|)

v1

)∗
, (15)

v3 = v2 + z23

(
φ3(|v2|)

v2

)∗
, (16)

v4 = v2 + z24

(
φ4(|v2|)

v2

)∗
. (17)
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4.5 The tree expansion method

The system (14)–(17) concluding Example 4.4.1 illustrates how the outcomes of the tree
reduction method, which are the reduction order, the voltage transfer functions {φk}k≥2

and the interval of possible values of v1, can be the basis of an algorithm for computing
vectors in Fv(P). Indeed, to obtain a feasible vector we just need to choose v1 ∈ Fv(P ′′) =
[0.97, 1.0663] and then compute v2, v3, v4 using the relations (15), (16) and (17). After
finding the four voltages v = (v1, v2, v3, v4)

T , the corresponding powers vector can be
computed by the relation s = QZ (v). The tree expansion method that computes a feasible
pair (v, s) ∈ Fvs(P) given a value of v1 ∈ [νmin

1 , νmax
1 ] is now described. Note that applying

Eq. (10) is done in the order which is opposite to the reduction order.

4.6 The tree reduction/expansion method for solving the OPF problem

We can solve the OPF problem on a given restricted radial network by following the next
steps: (i) represent the network as a CRN; (ii) employ the tree reduction method to obtain the
reduction order, the voltage transfer functions and an interval of possible values of v1; (iii)
use the tree expansion method to compute a discretized version of Fvs(P) and (iv) pick the
optimal solution out of the list of discretized pairs in Fvs(P). The algorithm executing these
four steps is called the tree reduction/expansion method, and its details are given below.

Algorithm 3 The Tree Reduction/Expansion Method
Input: a restricted radial network P with n nodes; additional set of constraints C ⊆ C

n ×C
n ; the grid density

parameter m ∈ N, m ≥ 1; objective function f : Cn × C
n → R.

Output: an optimal solution of (OPF) (up to discretization) on the network P with the additional constraints
C.
Steps:

1. Represent P as a CRN.
2. Reduction: Run the tree reduction method (Algorithm 1) on P and obtain the voltage transfer functions

{φk }nk=2, the reduction order u1, . . . , uw = 1 and the interval of possible values of v1, [νmin
1 , νmax

1 ].
3. Expansion:Construct a discretized version ofFvs (P): for any r = 1, 2, . . . ,m employ the tree expansion

method with input (P, (u1, . . . , uw), {φk }k≥2, ν
min
1 (1 − tr ) + νmax

1 tr ) where tr = r−1
m−1 and obtain an

output (vr , sr ) ∈ Fvs (P).
4. Return an element of

argmin
v,s

{ f (v, s) : (v, s) ∈ S ∩ C},

where S = {(vr , sr ) : r = 1, 2, . . . ,m}.

4.7 Implementation of the tree reduction method

In contrast to the example detailed in Sects. 4.3.1 and 4.4.1, an actual implementation of
the tree reduction method will not rely on symbolic expressions to represent the functions
νk, σk and φk . The reason for that is twofold: first, verifying that ν̃k are invertible based on
symbolic expressions is a challenging task on its own; second, inverting ν̃k , an operation
which is required in order to compute the voltage transfer function φk , requires analytically
solving high-order polynomial equations, which is known to be generally impossible for any
polynomial of degree 5 and above. Therefore, an actual implementation of the algorithm will
involve replacing all the one-dimensional functions by appropriate approximations. This is
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of course a modification of the algorithm, but fortunately, one-dimensional functions can be
well approximated. Belowwe provide the exact details of how the one-dimensional functions
were represented.
Representing νk, ν̃k, σ k, and σ̃ k The functions νk , ν̃k , σk , and σ̃k are represented by dis-
cretizing their argument t ∈ [0, 1] at d ≥ 4 (d ∈ N) uniformly spaced points, where the
discretization density d is a parameter of the algorithm. In other words, we define the vector

t =
(

0
d−1 ,

1
d−1 ,

2
d−1 , . . . ,

d−1
d−1

)T
.

We represent the functions νk, σk with the vectors νk, σ k ∈ R
d defined as

νk = νk (t) , σk = σk (t) , (18)

where the functions are applied component-wise to the vector t. Correspondingly, ν̃k, σ̃k with
j = PaT (k) are represented by the vectors ν̃k, σ̃ k ∈ R

d , constructed by applying Eq. (5) and
(4), component-wise, to the vectors defined in Eq. (18):

ν̃k =
∣∣∣∣νk − zk j

σk
∗

νk

∣∣∣∣

σ̃ k = σk − zk j
|σ k |2
ν2k

(19)

Invertibility and image of ν̃k A continuous function that maps real numbers to real numbers
is invertible if and only if it is strictly monotone.We perform approximate strict monotonicity
checking of ν̃k by verifying that the components of the vector ν̃k form a strictly monotone
sequence. We assume that for a large enough d , strict monotonicity of the sequence is a good
indicator for the strict monotonicity of the function. Approximating image(ν̃k) is also based
on the discretization above:

image(ν̃k) ≈ [min(ν̃k),max(ν̃k)]. (20)

Representing φk Since we need to be able to compute φk(·) at arbitrary points, we approxi-
mate these functions with cubic splines. We can verify, by induction on the structure of the
tree T , that the functions {φk}nk=2 are all smooth, and thus can be well-approximated by cubic
splines [7, Ch. XII]. More specifically, since φk = σ̃k ◦ ν̃−1

k , it satisfies

φk((ν̃k)r ) = (σ̃ k)r , r = 1, . . . , d. (21)

Therefore, for any k = 2, . . . , n the function φk is represented using an interpolating cubic
spline, whose domain is the interval in Eq. (20) and approximates the equations in (21).

The spline’s knots are the interpolation points, and end conditions are specified by the
well-known ‘not a knot’ method [7, Ch. IV, pp. 43–48]. These parameters were chosen since
they are widely used with spline interpolation, and have readily available implementations,
such as the csapi MATLAB function [18].

4.8 Handling non-leaf PV-constrained nodes

To demonstrate the concept of our algorithm, we made a simplifying assumption which
requires PV constrained nodes to be among the leaves of the rooted tree which defines the
network. However, the tree-reduction theorem, and the resulting algorithms, can be easily
extended for internal PV nodes.
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It can be easily shown that in Theorem 1, replacing the assumption that C j is a PQ
constrained node with an assumption that it is a PV constrained node, defined by

ν̂ j (t) = Vj , σ̂ j (t) = p̂ j +
(
(1 − t)Qmin

j + t Qmax
j

)
i,

results in a theorem that differs from the original in the following manner:

• Equation (6) is replaced by

Uj = {Vj } ∩
⎛

⎝
n⋂

k= j+1

image(ν̃k)

⎞

⎠

• Equation (8) is replaced by

ν j (t) = Vj

• Equation (9) is replaced by

σ j (t) = σ̂ j (t) +
n∑

j=k+1

φk(Vj )

In other words, after a reduction via a PV constrained node, we obtain a PV constrained leaf.
The Tree Reduction / Expansion method is modified accordingly.

4.9 Eliminating the invertibility assumption

Eliminating the invertibility assumption requires us first to analyze the tree reduc-
tion/expansion method from a high level perspective. Consider a CRN Pinput which is given
as an input to the tree reduction method. Let � be a mapping from the nodes of Pinput to
their associated voltage transfer function, e.g. φk ≡ �(k). The tree reduction method begins
with an empty �, and each subsequent reduction results in a smaller CRN, while the voltage
transfer functions associated with the discarded nodes are added to �.

Assume that at some stage during the execution of the tree reduction method on Pinput we
have the CRN P = (T, Z , C1, . . . , Cn) and the voltage transfer functions �. The invariant
maintained by the tree reduction method, which is ensured by Theorem 1, is that at each
stage the pair (P,�) is a full characterization of Fv(Pinput). Formally, we write Fv(P,�) =
Fv(Pinput), where Fv(P,�) is the set of all voltage vectors obtainable by taking any v′ ∈
Fv(P) and applying the tree expansion method using the voltage transfer functions �.

Now assume that the next reduction will be performed via node j , and for some k ∈
ChT ( j) the function ν̃k is not invertible. Clearly, the tree reduction theorem cannot be applied
to P and themethodwill fail.However, assuming that ν̃k has afinite number of local extremum
points, we can overcome this limitation. Let 0 = z0 < z1 < . . . < z� = 1 be the extremum
points of ν̃k . We can split the domain dom(ν̃k) = [0, 1] into the sub-domains

[z0, z1], [z1, z2] , . . . , [z�−2, z�−1], [z�−1, z�].
On each of these domains ν̃k is clearly strictly monotone and therefore invertible. This obser-
vation allows us to split the CRN P into the CRNs P1, . . . , P�, in which the invertibility
assumption, at least for node k, holds. For every r ∈ {1, . . . , �} we define the ‘reparameter-
ized’ versions of νk, σk ,

νk,r : [0, 1] → R, νk,r (t) ≡ νk((1 − t)zr−1 + t zr ),
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σk,r : [0, 1] → C, σk,r (t) ≡ σk((1 − t)zr−1 + t zr ),

Ck,r ≡ image(νk,r , σk,r ),

and the CRN

Pr = (T, Z , C1, . . . , Ck−1, Ck,r , Ck+1, . . . , Cn).

By construction we have Ck = ⋃�
r=1 Ck,r , and therefore Fv(P,�) = ⋃�

r=1 Fv(Pr ,�).
Thus, the set of pairs {(Pr ,�)}�r=1 remains a full characterization of Fv(Pinput). The
splitting process can continue with respect to each of the child nodes of j , until all
CRNs satisfy the assumptions of the tree reduction theorem. Then, the tree reduction
method can continue by performing the reduction via node j on all the pairs {(Pr ,�)} in
parallel.

Equipped with this idea, we can modify the tree reduction method to operate on a
set of pairs instead of a single pair. Pairs are added to the set when a CRN is split as
described above. A pair (P ′,�′) is removed from the set when the algorithm concludes that
Fv(P ′) = ∅.

Wecall a network forwhich the abovemodificationof the tree reductionmethod encounters
only functions ν̃k with a finite number of extremal points a well behaved network. In our
experiments we did not encounter networks which are not well behaved.

4.9.1 Implementation

Themodification of the tree reductionmethodmentioned above raises several practical issues:
detection of the extremal points, efficient representation of the set of CRNs at each stage,
and the memory and time complexity it induces.
Extremal points detection In an actual implementation, the functions νk, σk are represented
by their discrete approximations. For simplicity, our approach assumes that the extremal
points of ν̃k are the extremal elements in the array ν̃k which is defined in (18) and approximates
ν̃k .
Set of pairs representation Note that when a pair (P,�) is split, the resulting pairs share
a lot of data. In fact, they share all data, except for the constraint sets (which can also be
represented by curves) that were split. Instead of duplicating entire networks, we associate
each node with a set of constraint sets or voltage transfer functions, depending on weather or
not the node was already discarded by a reduction. Each network is identified by a specific
choice of a constraint set Ck for every leaf k out of the set of constraint sets associated with
node k.

Initially, all sets are singletons. When a constraint curve Ck needs to be split, it is removed
from the set associated with node k and replaced with the set of constraint sets which result
from the above-mentioned splitting process.

Performing a reduction via node j on all networks in parallel is done by considering all
possible choices of constraint sets associated with the children of node j , since each choice
identifies a CRN. Each of the constraint sets associated with the leaf k is transformed into a
voltage transfer function, and then all choices of voltage transfer functions of all the child
nodes of j are used to compute the possible constraint sets associated with node j . To identify
which network a constraint or a voltage transfer function belongs to, we store a ‘pointer’ to
the specific child voltage transfer functions that were used to compute it. This process is
described in Fig. 7.
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...

A

B

Constraint ID
CB,1 . . .
CB,2 . . .

C

Constraint ID
CC,1 . . .
CC,2 . . .

=⇒
...

A

B

Constraint ID
φB,1 . . .
φB,2 . . .

C

Constraint ID
φC,1 . . .
φC,2 . . .

Constraint ID
CA,1 φB,1, φC,1
CA,2 φB,1, φC,2
CA,3 φB,2, φC,1
CA,4 φB,2, φC,2

Fig. 7 A reduction via node A on all network in parallel. On the left two constraints associated with node
B and two with node C , representing four networks. On the right the result of the reduction. Four networks
were reduced into four smaller networks. Node A is associated with four possible constraint curves, each one
has an associated network ID in the form of the specific choice of child voltage transfer functions

5 Proof of the tree reduction theorem

First, we prove the following technical Lemma:

Lemma 1 Let T = (V, E) be the topology tree of some power network with V = {1, . . . , n},
and let Z : E → C be the associated impedance function. LetY be defined as in (3). Suppose
that B ∈ V is a leaf, and {A, B} ∈ E be the edge connected to B. Then (v, s) ∈ PFE(T, Z)

if and only if there exists s̃B ∈ C such that (v, s, s̃B) satisfy the following equations:

si =
n∑

j=1
j �=B

viv
∗
j Y

∗
i j i = 1 . . . n, i �= A, i �= B, (22)

sA + s̃B =
n∑

i=1
i /∈{A,B}

vAv∗
i Y

∗
A,i + |vA|2

⎛

⎜⎜⎝
∑

i∈NA
i �=B

1

z∗A,i

⎞

⎟⎟⎠ , (23)

|vA| =
∣∣∣∣|vB | − s∗

BzA,B

|vB |
∣∣∣∣ , (24)

s̃B = sB − zA,B
|sB |2
|vB |2 , (25)

vB = vA + s̃∗
BzA,B

v∗
A

. (26)

Proof Since B is a leaf with a connecting edge {A, B}, we have NB = {A}. Thus, according
to the definition of Y in (3) we have

∀i /∈ {A, B} : Yi,B = YB,i = 0.

Hence, for i /∈ {A, B}, equations (2) must hold if and only if (22) holds. We now need to
prove that (2) holds for i = A, B if and only if (23), (24), (25), and (26) hold. The proof is
separated into the only if and if parts.
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The only if part. Assume that the power flow equations (2) hold for i = A, B. Using the
power flow equation for sA, we can write:

sA =
n∑

i=1

vAv∗
i Y

∗
A,i

=
n∑

i=1
i /∈{A,B}

vAv∗
i Y

∗
A,i + |vA|2Y ∗

A,A + vAv∗
BY

∗
A,B

=
n∑

i=1
i /∈{A,B}

vAv∗
i Y

∗
A,i + |vA|2

⎛

⎝
∑

i∈NA

1

z∗A,i

⎞

⎠− vAv∗
B

z∗A,B

=
n∑

i=1
i /∈{A,B}

vAv∗
i Y

∗
A,i + |vA|2

⎛

⎜⎜⎝
∑

i∈NA
i �=B

1

z∗A,i

⎞

⎟⎟⎠− vAv∗
B − |vA|2
z∗A,B︸ ︷︷ ︸
s̃B

(27)

By defining

s̃B = vAv∗
B − |vA|2
z∗A,B

, (28)

and re-arranging (27), we obtain (23).
According to the power flow equation for sB , using the relations YA,B = − 1

zA,B
and

YB,B = 1
zA,B

as given in (3), we have:

sB = −vBv∗
A

z∗A,B
+ vBv∗

B

z∗A,B
,

that is,
sBz

∗
A,B = −vBv∗

A + |vB |2.
Applying the conjugate on both sides and extracting vA we get:

vA = |vB |2 − s∗
BzA,B

v∗
B

. (29)

By taking the absolute value on both sides of (29), we obtain:

|vA| = ||vB |2 − s∗
BzA,B |

|vB | =
∣∣∣∣|vB | − s∗

BzA,B

|vB |
∣∣∣∣

which is exactly (24).
Substituting the expression for vA from (29) and for |vA| from (24) into the definition of

s̃B in (28) yields:

s̃B = vAv∗
B − |vA|2
z∗A,B

=
|vB |2 − s∗

BzA,B −
∣∣∣|vB | − s∗B zA,B

|vB |
∣∣∣
2

z∗A,B
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=
|vB |2 − s∗

BzA,B −
(
|vB |2 − s∗

BzA,B − sBz∗A,B + |sB |2|zA,B |2
|vB |2

)

z∗A,B

=
sBz∗A,B − |sB |2|zA,B |2

|vB |2
z∗A,B

= sB − zA,B
|sB |2
|vB |2 , (30)

which proves (25),
Finally, by re-arranging Eq. (28) we obtain:

vB = s̃∗
BzA,B + |vA|2

v∗
A

= vA + s̃∗
BzA,B

v∗
A

,

which is exactly (26).
The if part. Assume that (23), (24), (25), and (26) hold. We will show that (2) holds for
i = A, B.

Beginning from (25) and following the mathematical derivation in (30) backwards, uti-
lizing (24), we can conclude that:

s̃B = |vB |2 − s∗
BzA,B − |vA|2
z∗A,B

. (31)

Extracting s̃B from (26) we obtain:

s̃B = v∗
BvA − |vA|2

z∗A,B
. (32)

Subtracting both equations, and extracting sB from the result we obtain:

sB = |vB |2
z∗A,B

− vBv∗
A

z∗A,B
,

which is exactly the power flow equation for node B.
Substituting (32) into (23), and following the mathematical derivation in (27) backwards,

we obtain the power flow equation for node A:

sA =
n∑

i=1

vAv∗
i Y

∗
A,i .

��
Note the following remarks:

1. Equations (22) and (23) are exactly the power flow equations associated with the network
(T̄ , Z̄), where T̄ is the tree T with node B and the edge (A, B) removed and Z̄ is the
impedance function restricted to T̄ .

2. Thus, by assuming w.l.o.g. that B = n and A = n − 1, equations (22) and (23)
can be replaced by (v′, s′) ∈ PFE(T̄ , Z̄), where v′ = (v1, . . . , vn−1) and s′ =
(s1, . . . , sn−2, sn−1 + s̃n).

The remarks above help us prove the next technical Lemma, which is directly used in the
proof of the tree reduction theorem.
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Lemma 2 Let T = (V, E) be the topology tree of some power network with V = {1, . . . , n},
and let Z : E → C be the associated impedance function. Let T ′ be the reduction of T
via the reducible node j ∈ V , and assume w.l.o.g. that ChT ( j) = { j + 1, . . . , n}. Then
(v, s) ∈ PFE(T, Z) if and only if all of the following hold (Z ′ is the impedance function
restricted to the edges of T ′):

(v′, s′) ∈ PFE(T ′, Z ′),
v′ = (v1, . . . , v j )

s′ = (s1, . . . , s j−1, s
′
j )

(33)

|v j | =
∣∣∣∣|vk | − s∗

k zk j
|vk |

∣∣∣∣ , k = j + 1, . . . , n (34)

s′
j = s j +

n∑

k= j+1

s̃k, (35)

s̃k = sk − zk j
|sk |2
|vk |2 , k = j + 1, . . . , n (36)

vk = v j + s̃∗
k zk j
v∗
j

, k = j + 1, . . . , n (37)

Proof Follows directly by repeatadly applying Lemma 1 for B = j + 1, . . . , n with A = j .
��

We are now ready to prove the tree reduction theorem (Theorem 1).

Proof of Theorem 1 The statement v ∈ Fv(P), by definition, holds if and only if

(v, s) ∈ PFE(T, Z),

(|vk |, sk) ∈ Ck, k = 1, . . . , n,

arg(v1) = 0.

Using the definition of Ck for k = j, . . . , n, the system above is equivalent to the following
system in the variables v1, . . . , vn, s1, . . . , sn, t j+1, . . . , tn :

(v, s) ∈ PFE(T, Z),

|vk | = νk(tk), sk = σk(tk), tk ∈ [0, 1], k = j + 1, . . . , n,

s j = ŝ j , if j �= 1,

Vmin
j ≤ |v j | ≤ Vmax

j , if j �= 1,

(|vk |, sk) ∈ Ck, k = 1, . . . , j − 1,

arg(v1) = 0.

Applying Lemma 2 to the constraint (v, s) ∈ PFE(T, Z), and utilizing the identities |vk | =
νk(tk), sk = σk(tk), s j = ŝ j , we obtain equivalence to the following system in the variables
v1, . . . , v j , s1, . . . , s j−1, s′

j , t j+1, . . . , tn , s̃ j+1, . . . , s̃n :

(v′, s′) ∈ PFE(T ′, Z ′), v′ = (v1, . . . , v j )
T , s′ = (s1, . . . , s j−1, s

′
j )
T ,

|v j | =
∣∣∣∣νk(tk) − (σk(tk))∗zk j

νk(tk)

∣∣∣∣ , k = j + 1, . . . , n,

s′
j = ŝ j +

n∑

k= j+1

s̃k, if j �= 1,
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vk = v j + s̃∗
k zk j
v∗
j

, k = j + 1, . . . , n,

s̃k = σk(tk) − zk j
|σk(tk)|2
(νk(tk))2

, k = j + 1, . . . , n,

tk ∈ [0, 1], k = j + 1, . . . , n,

Vmin
j ≤ |v j | ≤ Vmax

j , if j �= 1,

(|vk |, sk) ∈ Ck, k = 1, . . . , j − 1,

arg(v1) = 0.

Substituting the definition of ν̃k, σ̃k , and observing that s̃k = σ̃k(tk), we conclude
that the above above system is equivalent to the following system in the variables
v1, . . . , v j , s1, . . . , s j−1, s′

j , t j+1, . . . , tn :

(v′, s′) ∈ PFE(T ′, Z ′), v′ = (v1, . . . , v j )
T , s′ = (s1, . . . , s j−1, s

′
j )
T ,

|v j | = ν̃k(tk), k = j + 1, . . . , n,

s′
j = ŝ j +

n∑

k= j+1

σ̃k(tk), if j �= 1,

vk = v j + (σ̃k(tk))∗zk j
v∗
j

, k = j + 1, . . . , n,

tk ∈ [0, 1], k = j + 1, . . . , n,

Vmin
j ≤ |v j | ≤ Vmax

j , if j �= 1,

(|vk |, sk) ∈ Ck, k = 1, . . . , j − 1,

arg(v1) = 0.

Using the assumed invertibility of ν̃k , we can conclude that |v j | = ν̃k(tk) if and only if
|v j | ∈ image(ν̃k) and tk = ν̃−1

k (|v j |), and obtain equivalence to the system in the variables
v1, . . . , v j , s1, . . . , s j−1, s′

j ,

(v′, s′) ∈ PFE(T ′, Z ′), v′ = (v1, . . . , v j )
T , s′ = (s1, . . . , s j−1, s

′
j )
T ,

s′
j = ŝ j +

n∑

k= j+1

σ̃k(ν̃
−1
k (|v j |)), if j �= 1,

vk = v j + (σ̃k(ν̃
−1
k (|v j |)))∗zk j

v∗
j

, k = j + 1, . . . , n,

|v j | ∈ image(ν̃k), k = j + 1, . . . , n, (∗)
Vmin ≤ |v j | ≤ Vmax , if j �= 1, (∗∗)
(|vk |, sk) ∈ Ck, k = 1, . . . , j − 1,

arg(v1) = 0.

Since ν̃k is continuous on the domain [0, 1], the set image(ν̃k) is a bounded closed interval.
Recalling the definition of Uj , we conclude that it if Uj = ∅, then Fv(P) = ∅. If Uj �= ∅,
then it is a closed bounded interval. Denoting Uj = [νmin

j , νmax
j ], the constraints (∗) and
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(∗∗) above can be replaced with the inequality νmin
j ≤ |v j | ≤ νmax

j . Thus, by letting

ν j : [0, 1] → R s.t. ν j (t) = νmax
j · t + νmin

j · (1 − t),

the system can be equivalently written as

(v′, s′) ∈ PFE(T ′, Z ′), v′ = (v1, . . . , v j )
T , s′ = (s1, . . . , s j−1, s

′
j )
T ,

s′
j = ŝ j +

n∑

k= j+1

σ̃k(ν̃
−1
k (ν j (t))), if j �= 1,

vk = v j + (σ̃k(ν̃
−1
k (|v j |)))∗zk j

v∗
j

, k = j + 1, . . . , n,

|v j | = ν j (t),

(|vk |, sk) ∈ Ck, k = 1, . . . , j − 1

t ∈ [0, 1],
arg(v1) = 0.

Note that when j = 1, the constraint (v′, s′) ∈ PFE(T ′, Z ′) is equivalent to s′
1 = 0. Thus,

by defining σ j as in (9), letting
C′
j = image(ν j , σ j ),

reordering, and recalling the definition of φk , the system can be rewritten as

(v′, s′) ∈ PFE(T ′, Z ′), v′ = (v1, . . . , v j )
T , s′ = (s1, . . . , s j−1, s

′
j )
T ,

(|vk |, sk) ∈ Ck, k = 1, . . . , j − 1,

(|v j |, s′
j ) ∈ C′

j ,

arg(v1) = 0,

vk = v j + zk j

(
φk(|v j |)

v j

)∗
, k = j + 1, . . . , n

The system above completes the proof, since the first four relations are the same as v′ ∈
Fv(P ′) and the fourth relation is the same as item 2 in the premise of the theorem. ��

6 Numerical experiments

We evaluated our implementation of the tree reduction/expansion method for solving the
OPF problem on several cases to demonstrate the following features of our method:

• Accuracy: show that a moderate value of the approximation density d is enough for the
pairs (v, s) produced by our method to be feasible.

• Reliability: we always find a global optimum for feasible problems, in contrast to MAT-
POWER [20], which to the best of our knowledge is considered state of the art.

• The number of parallel CRNs in practice: verify that the number of CRNs on which
the tree reduction method operates concurrently remains small.

We performed our numerical experiments on existing networks that were slightlymodified
to satisfy all the assumptions required from restricted radial networks. Specifically, we used
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the IEEE radial distribution networks with 13, 37, and 123 buses available at [19], a network
with 47 buses used in [9], and a network with 69 buses used in [4]. We made our MATLAB
implementation of the tree reduction/expansionmethod as an open source project onGitHub1,
together with the networks we used for our experiments.

6.1 Accuracy

In order to say that a pair (v, s) produced by our method is “practically feasible” for a
restricted radial network P , we need to define some measures of deviation from feasibility.
The definition of these measures uses the following ingredients: the set of PQ-constrained
nodes PQ, the set of PV-constrained nodes PV , the distance function

d(x;α, β) =

⎧
⎪⎨

⎪⎩

x − β x > β

α − x x < α

0 otherwise,

which measures the distance of x from the interval [α, β]. With the ingredients above, we
define the following measures for deviation from the constraints of PQ constrained nodes:

EPQ,v(v, s) = max
j∈PQ

d
(
|v j |, Vmin

j , Vmax
j

)
,

EPQ,s(v, s) = max
j∈PQ

|s j − ŝ j |,

and the following measures for PV constrained nodes:

EPV,v(v, s) = max
j∈PV

|v̂ j − |v j ||
EPV,p(v, s) = max

j∈PV
| p̂ j − re(s j )|

EPV,q(v, s) = max
j∈PV

d
(
im(s j ), Q

min
j , Qmax

j

)

Clearly, for a pair (v, s) ∈ Fvs(P) all of the above measures are zero. Note that we do not
measure the deviation from the constraints imposed by the power flow equations, since ,by
definition, our method computes s = QZ (v).

For every network, we chose a set of approximation densities d ∈ [23, 212] as inputs to the
tree reduction method (Algorithm 1), and for each such density producedm = 1000 samples
of the feasible set using the tree-expansion method (Algorithm 2), and took the maximum
of each error measure over all the samples. In all our experiments, the measures EPQ,v and
EPV,q were always zero. The results for the other measures, which appear in Fig. 8, show
that for d ≥ 210 we obtain solutions which are practically feasible. In addition, very accurate
results are obtained even for d as small as 25.

6.2 Reliability

Wecompared ourmethod toMATPOWERon networkswhichwere randomly generated from
our existing networks by pertubing every PQ constraint C j = [Vmin

j , Vmax
j ] × { p̂ j + i q̂ j }

into
[Vmin

j , Vmax
j ] × { p̂ j · α j + (q̂ j · β j )i},

1 https://github.com/alexshtf/trem_opf_solver.
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Fig. 8 Constraint violation measures for different networks

Table 1 The % of random networks, generated from each original network, for which our method found a
solution while MATPOWER did not

13-Bus 34-Bus 37-Bus 47-Bus 69-Bus 123-Bus

6.46% 5.22% 2.56% 2.78% 2.34% 39.64%

where α j , β j are uniformly distributed random variables in [0, 2]. That is, we introduced
uniform multiplicative noise to the prescribed power in the PQ constraints in our networks,
while leaving the other constraints unchanged.

From each network, we generated 5000 random networks and solved the OPF problem
on each random network using both MATPOWER and the tree reduction/expansion method,
with the following stability objective function:

f (v, s) =
∑

j∈PQ

∣∣∣∣|v j | − 1

2
(Vmin

j + Vmax
j )

∣∣∣∣

Note that MATPOWER does not naturally support the function above, but its extension
mechanism lets us specify this function quite easily. For each network we gathered statistics
about the results of running both solvers on the randomly perturbed networks.

For each original network, we measured the percentage of randomly generated networks
for which MATPOWER produced a feasible solution while our algorithm claimed that the
network is infeasible. However, there weremany networks for whichMATPOWER could not
find a solution since it did not converge, while our method did. Table 1 shows the percentage,
out of the 5000 random networks we generated from each original networks, for which
MATPOWER could not find a solution. As an example, a specific 13-bus network is shown
in Fig. 9.

Finally, comparing the objective function value for the randomly generated networks for
which both algorithms reported a solution resulted in no significant difference. This leads
us to the conclusion that for this set of experiments, if MATPOWER finds a solution, it is
probably a global solution.

The results reported above provide empirical evidence for our claim that in contrast to
MATPOWER, our method finds the global solution, up to discretization, if one exists.
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1

2

3

4

5

6

7

8

9

10

11

12 13

Topology Impedances
{i, j} zij
{2,3} 0.003678 + 0.002768i

{1,4} 0.004072 + 0.013066i

{3,4} 0.006131 + 0.004614i

{4,5} 0.003241 + 0.004161i

{6,7} 0.004366 + 0.004442i

{4,8} 0.004072 + 0.013066i

{7,8} 0.003678 + 0.002933i

{8,9} 0.002668 + 0.002272i

{7,10} 0.011758 + 0.004488i

{8,11} 0.002036 + 0.006533i

{9,12} 0.002668 + 0.002272i

{11,13} 0.004072 + 0.013066i

PQ constraints
j ŝj
2 −0.033057 − 0.002273i

3 −0.015402 − 0.160811i

4 −0.167257 − 0.031388i

5 −0.299757 − 0.072558i

6 −0.310206 − 0.042989i

7 0
8 −0.080523 − 0.070895i

9 −0.834552 − 0.225611i

10 −0.036036 − 0.007116i

11 0

V min = 0.9, V max = 1.1

PV constraints

p̂j = v̂j = 1, [Qmin
j , Qmax

j ] = [−40, 40], j ∈ {12, 13}

Fig. 9 A 13-bus network for whichMATPOWER does not converge given the OPF problemwith the stability
objective function
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Fig. 10 The number of curves and curve combination considered when the impedances are increased by
various factors

6.3 CRN set size and computational time

One way to violate the invertibility assumption is by increasing the network’s impedances.
Intuitively, looking at equation (4),when the impedance zk j is small, the value of νk dominates
the expression. Since in our algorithm νk are linear functions, the resulting ν̃k is ‘almost
linear’, and thus invertible.

Based on the intuition above, we multiplied all the impedances in our test networks by
various factors between 1 and 10. For each execution, we measured the number of curves
associated with each node, and the number of curve combinations considered when a reduc-
tion is performed. The results are summarized in Fig. 10. Indeed, the representation size and
the computational time we pay for eliminating the invertibility assumption remains small.

Note that when the impedances increase too much, the network becomes infeasible, and
the tree reduction method stops long before reaching the root of the tree. Thus, when the
factor is too large, the number of curves and considered combinations drops.
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